skip to main content

Performance and economic analysis of a reversed circular flow jet impingement bifacial PVT solar collector

Solar Energy Research Institute (SERI), Research Complex, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Received: 10 May 2023; Revised: 15 Jun 2023; Accepted: 30 Jun 2023; Available online: 8 Jul 2023; Published: 15 Jul 2023.
Editor(s): Soulayman Soulayman
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

As the world shifts towards a more sustainable future, solar energy has emerged as a preeminent and economically feasible alternative to traditional energy sources, gaining widespread adoption. This study presents a reversed circular flow jet impingement (RCFJI) which aims to improve the performance of a bifacial PVT collector. An indoor experiment using a solar simulator to assess the energy, exergy, and economic efficiency of a RCFJI bifacial PVT collector. The study was carried out using a solar irradiance ranging from 500-900W/m2 and a mass flow rate between 0.01-0.14 kg/s. Energy performance-wise, the highest photovoltaic efficiency achieved was 11.38% at solar irradiance of 500 W/m2, while the highest thermal efficiency achieved was 61.4% under 900 W/m2, both obtained at 0.14 kg/s mass flow rate. Regarding exergy performance, the highest photovoltaic exergy obtained was 47.27 W under 900 W/m2 at 0.14 kg/s, while the highest thermal exergy was 9.67 W at 900 W/m2 at 0.01 kg/s. Overall, higher solar irradiance is more desirable for energy and exergy performance. Meanwhile, economic point of view, lower solar irradiance is preferable. Based on the findings, the optimal mass flow rate was 0.06 kg/s.

Fulltext View|Download
Keywords: Jet impingement; Photovoltaic thermal (PVT); Heat transfer; Energy analysis; Exergy analysis
Funding: Adnan Ibrahim/FRGS/1/2019/TK07/UKM/02/4.

Article Metrics:

  1. Adebayo, V. & Koçyiğit, K. (2017). Techno-economic Analysis of an Off-grid Solar Photovoltaic Energy System for a Typical Rural Household in Adamawa State, Nigeria Techno-economic Analysis View project Techno-economic Analysis of an Off-grid Solar Photovoltaic Energy System for a Typical R., 1–14. https://www.researchgate.net/publication/319470224
  2. Adu-Kankam, K. O., & Camarinha-matos, Luis. (2022). Delegating Autonomy on Digital Twins in Energy Ecosystems. International Journal of Smart Grid, 6(4). https://doi.org/10.20508/ijsmartgrid.v6i4.257.g253
  3. Ahmad, M., & Zeeshan, M.. (2022). Multi-objective optimization of concentrated solar power plants from an energy-water-environment nexus perspective under distinct climatic conditions – Part A: Techno-economic analysis. Journal of Cleaner Production, 375, 134099. https://doi.org/10.1016/j.jclepro.2022.134099
  4. Ahmed, Omer K., Daoud, Raid W., Bawa, Shaimaa M., & Ahmed, Ahmed H. (2020). Optimization of PV/T solar water collector based on fuzzy logic control. International Journal of Renewable Energy Development, 9(2), 303–310. https://doi.org/10.14710/ijred.9.2.303-310
  5. Alsaqoor, S., Alqatamin, A., Alahmer, A., Nan, Z., Al-Husban, Y., & Jouhara, H.. (2023). The impact of phase change material on photovoltaic thermal (PVT) systems: A numerical stud. International Journal of Thermofluids, 18(April), 100365. https://doi.org/10.1016/j.ijft.2023.100365
  6. Bassam, A. M., Sopian, K., Ibrahim, A., Fauzan, M. F., Al-Aasam, A. B., & Abusaibaa, G.Y. (2023). Experimental analysis for the photovoltaic thermal collector (PVT) with nano PCM and micro-fins tube nanofluid. Case Studies in Thermal Engineering, 41. https://doi.org/10.1016/j.csite.2022.102579
  7. Bisengimana, E., Zhou, J. Binama, M., Nyiranzeyimana, G., & Yuan, Y.. (2023). Numerical investigation of PVT coverage on an integrated building-solar-heat pump system: Technical and economic study. Solar Energy, 249, 507–520. https://doi.org/10.1016/j.solener.2022.12.005
  8. Cabral, D. (2022). Development and performance comparison of a modified glazed CPC hybrid solar collector coupled with a bifacial PVT receiver. Applied Energy, 325, 119653. https://doi.org/10.1016/j.apenergy.2022.119653
  9. Cabral, D. & Karlsson, B.O. (2018). Electrical and thermal performance evaluation of symmetric truncated C-PVT trough solar collectors with vertical bifacial receivers. Solar Energy, 174(August), 683–690. https://doi.org/10.1016/j.solener.2018.09.045
  10. Caruso, M., Miceli, R., Romano, P., Schettino, G., & Viola, F.. (2018). Technical and Economical Performances of Photovoltaic Generation Facades. International Journal of Smart Grid, 2(2). https://doi.org/10.20508/ijsmartgrid.v2i2.19.g19
  11. Choudhury, C., & Garg, H. P. (1991). Evaluation of a jet plate solar air heater. Solar Energy, 46(4), 199–209. https://doi.org/10.1016/0038-092X(91)90064-4
  12. Dwivedi, P., Sudhakar, K., Soni, A., & Solomin, E. (2020). Case Studies in Thermal Engineering Advanced cooling techniques of PV modules : A state of art. Case Studies in Thermal Engineering, 21, 100674. https://doi.org/10.1016/j.csite.2020.100674
  13. Elfeky, K. E., & Wang, Q.. (2023). Techno-economic assessment and optimization of the performance of solar power tower plant in Egypt's climate conditions. Energy Conversion and Management, 280, 116829. https://doi.org/10.1016/j.enconman.2023.116829
  14. Ellabban, O. & Alassi, A. (2019). Integrated Economic Adoption Model for residential grid-connected photovoltaic systems: An Australian case study. Energy Reports, 5, 310–326. https://doi.org/10.1016/j.egyr.2019.02.004
  15. Esmer, S. (2022). Design of PMaSynRM for Flywheel Energy Storage System in Smart Grids. International Journal of smart grid. 6(4), 1–7. https://www.ijsmartgrid.org/index.php/ijsmartgridnew/article/view/255
  16. Ewe, W. E., Fudholi, A., Sopian, K., Moshery, R., Asim, N., Nuriana, W. & Ibrahim, A. (2022). Thermo-electro-hydraulic analysis of jet impingement bifacial photovoltaic thermal (JIBPVT) solar air collector. Energy, 254, 124366. https://doi.org/10.1016/j.energy.2022.124366
  17. Faizal, M., Saidur, R., Mekhilef, S., & Alim, M. A. (2013). Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector. Energy Conversion and Management, 76, 162–168. https://doi.org/10.1016/j.enconman.2013.07.038
  18. Fudholi, A., Sopian, K., Othman, M.Y., Ruslan, M. H., & Bakhtyar, B. (2013). Energy analysis and improvement potential of finned double-pass solar collector. Energy Conversion and Management, 75, 234–240. https://doi.org/10.1016/j.enconman.2013.06.021
  19. Fudholi, A., Sopian, K., Ruslan, M.H., & Othman, M. Y. (2013). Performance and cost benefits analysis of double-pass solar collector with and without fins. Energy Conversion and Management, 76, 8–19. https://doi.org/10.1016/j.enconman.2013.07.015
  20. Fudholi, A., Zohri, M., Rukman, N. S. Bt, Nazri, N., S., Mustapha, M., Yen, C., H., Mohammad, M., & Sopian, K.. (2019). Exergy and sustainability index of photovoltaic thermal (PVT) air collector: A theoretical and experimental study. Renewable and Sustainable Energy Reviews, 100, 44–51. https://doi.org/10.1016/j.rser.2018.10.019
  21. Guno, C. S., Agaton, C.B., Villanueva, R. O. & Villanueva, R. O.. (2021). Optimal investment strategy for solar pv integration in residential buildings: A case study in the philippines. International Journal of Renewable Energy Development, 10(1), 79–89. https://doi.org/10.14710/ijred.2021.32657
  22. Hussein, N. F., Ahmed, S.T., & Ekaid, A.L. (2023). Thermal Performance of Double Pass Solar Air Heater With Tubular Solar Absorber. International Journal of Renewable Energy Development, 12(1), 11–21. https://doi.org/10.14710/ijred.2023.46328
  23. Jang, J., Pfreundt, A., Mittag, M. & Lee, K. (2021). Performance analysis of bifacial pv modules with transparent mesh backsheet. Energies, 14(5). https://doi.org/10.3390/en14051399
  24. Javed, F. (2022). Impact of Temperature & Illumination for Improvement in Photovoltaic System Efficiency. International Journal of Smart Grid, 6(v6i1). https://doi.org/10.20508/ijsmartgrid.v6i1.222.g185
  25. Jha, P., Mondol, J. D., Das, B., & Gupta, R. (2020). Energy metrics assessment of a photovoltaic thermal air collector (PVTAC): a comparison between flat and wavy collector. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 0(0), 1–19. https://doi.org/10.1080/15567036.2020.1809563
  26. Ji, J., Lu, J.P., Chow, T.T., He, W., & Pei, G. (2007). A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation. Applied Energy, 84(2), 222–237. https://doi.org/10.1016/j.apenergy.2006.04.009
  27. Kaci, K., Merzouk, M., Merzouk, N.K., Missoum, M., Ganaoui, M. El., Behar, O., & Djedjigd, R.. (2023). Design, optimization and economic viability of an industrial low temperature hot water production system in Algeria: A case study. International Journal of Renewable Energy Development, 12(3), 448–458. https://doi.org/10.14710/ijred.2023.49759
  28. Kingsley-amaehule, M., Uhunmwangho, R., Nwazor, N. & Kenneth, E. (2022). Smart Intelligent Monitoring and Maintenance Management of Photo-voltaic Systems. International Journal of Smart Grid. 6(4). https://doi.org/10.20508/ijsmartgrid.v6i4.260.g246
  29. Lee, J.W., Song, M.S., Jung, H.S., & Kang, Y.T. (2023). Development of solar radiation spectrum-controlled emulsion filter for a photovoltaic-thermal (PVT) system. Energy Conversion and Management, 287, 117087. https://doi.org/10.1016/j.enconman.2023.117087
  30. Li, J., Zhang, W., Xie, L., Li, Z., Wu, X., Zhao, O., Zhong, J., & Zeng, X. (2022). A hybrid photovoltaic and water/air based thermal(PVT) solar energy collector with integrated PCM for building application. Renewable Energy, 199, 662–671. https://doi.org/10.1016/j.renene.2022.09.015
  31. Lin, B., & Chen, Y. (2019). Does electricity price matter for innovation in renewable energy technologies in China ? Energy Economics, 78, 259–266. https://doi.org/10.1016/j.eneco.2018.11.014
  32. Luque, A., Cuevas, A., & Ruiz, J. M. (1980). Double-sided n+-p-n+ solar cell for bifacial concentration. Solar Cells, 2(2), 151–166. https://doi.org/10.1016/0379-6787(80)90007-1
  33. Madas, S. R., Narayanan, R., & Gudimetla, P. (2023). Numerical investigation on the optimum performance output of photovoltaic thermal (PVT) systems using nano-copper oxide (CuO) coolant. Solar Energy, 255, 222–235. https://doi.org/10.1016/j.solener.2023.02.035
  34. Mohammadpour, J., Salehi, F., Sheikholeslami, M., & Lee, A. (2022). A computational study on nano fl uid impingement jets in thermal management of photovoltaic panel. Renewable Energy, 189, 970–982. https://doi.org/10.1016/j.renene.2022.03.069
  35. Moshery, R., Chai, T.Y., Sopian, K., Fudholi, A., & Al-Waeli, A.H.A. (2021). Thermal performance of jet-impingement solar air heater with transverse ribs absorber plate. Solar Energy, 214, 355–366. https://doi.org/10.1016/j.solener.2020.11.059
  36. Mustapha, M., Fudholi, A., & Sopian, K.. (2020). Mathematical modelling of bifacial photovoltaic-thermal (BPVT) collector with mirror reflector. International Journal of Renewable Energy Research, 10(2), 654–662. https://doi.org/10.20508/ijrer.v10i2.10603.g7936
  37. Naveen, S., Aravind, S., Yamini, B., Vasudhareni, R., Gopinath, K. P., Arun, J., & Pugazhendhi, A. (2023). A review on solar energy intensified biomass valorization and value-added products production: Practicability, challenges, techno economic and lifecycle assessment. Journal of Cleaner Production, 405(April), 137028. https://doi.org/10.1016/j.jclepro.2023.137028
  38. Nazri, N. S., Fudholi, A., Bakhtyar, B., Yen, C. H., Ibrahim, A., Ruslan, M.H., Mat, S., & Sopian, K. (2018). Energy economic analysis of photovoltaic-thermal-thermoelectric (PVT-TE) air collectors. Renewable and Sustainable Energy Reviews, 92, 187–197. https://doi.org/10.1016/j.rser.2018.04.061
  39. Obraztsova, A. A., Barettin, D., Furasova, A. D., Voroshilov, P. M., Maur, M.A.D., Orsini, A., & Makarov, S. V. (2022). Light-Trapping Electrode for the Efficiency Enhancement of Bifacial Perovskite Solar Cells. Nanomaterial, 1–14. https://doi.org/10.3390/nano12183210
  40. Ooshaksaraei, P. (2015). Evaluation Of Air-Based Photovoltaic Thermal Collectors With Bifacial Solar Cells. Thesis, Universiti Kebangsaan Malaysia
  41. Ooshaksaraei, P., Sopian, K., Zaidi, S. H., & Zulkifli, R. (2017). Performance of four air-based photovoltaic thermal collectors configurations with bifacial solar cells. Renewable Energy, 102, 279–293. https://doi.org/10.1016/j.renene.2016.10.043
  42. Panchal, R., Gomes, J., Cabral, D., Eleyele, A., & Lança, M. (2020). Evaluation of symmetric C-PVT solar collector designs with vertical bifacial receivers. Proceedings of the ISES Solar World Congress 2019 and IEA SHC International Conference on Solar Heating and Cooling for Buildings and Industry 2019, 165–176. https://doi.org/10.18086/swc.2019.05.02
  43. Rahimi, I., Nikoo, M. R., & Gandomi, A. H. (2023). Techno-economic analysis for using hybrid wind and solar energies in Australia. Energy Strategy Reviews, 47, 101092. https://doi.org/10.1016/j.esr.2023.101092
  44. Rahmat, M. A. A., Abd Hamid, Ag. S., Lu, Y., Ishak, M. A. A., Suheel, S. Z., Fazlizan, A., & Ibrahim, A.. (2022). An Analysis of Renewable Energy Technology Integration Investments in Malaysia Using HOMER Pro. Sustainability (Switzerland), 14(20). https://doi.org/10.3390/su142013684
  45. Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T., Schmidt, W. P., Suh, S., Weidema, B. P., & Pennington, D. W. (2004). Life cycle assessment: Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environment International, 30(5), 701–720. https://doi.org/10.1016/j.envint.2003.11.005
  46. Ren, M., Mitchell, C. R., & Mo, W.. (2020). Dynamic life cycle economic and environmental assessment of residential solar photovoltaic systems. Science of the Total Environment, 722, 137932. https://doi.org/10.1016/j.scitotenv.2020.137932
  47. Saini, P., Ghasemi, M., Arpagaus, C., Bless, F., Bertsch, S., & Zhang, X.. (2023). Techno-economic comparative analysis of solar thermal collectors and high-temperature heat pumps for industrial steam generation. Energy Conversion and Management, 27. https://doi.org/10.1016/j.enconman.2022.116623
  48. Singh, P.K., Sahu, S.K., Upadhyay, P.K., & Jain, A.K. (2020). Experimental investigation on thermal characteristics of hot surface by synthetic jet impingement. Applied Thermal Engineering, 165, 114596. https://doi.org/10.1016/j.applthermaleng.2019.114596
  49. Sopian, K., Liu, H. T., Kakac, S., & Veziroglu, T. N. (2000). Performance of a double pass photovoltaic thermal solar collector suitable for solar drying systems. Energy Conversion and Management, 41(4), 353–365. https://doi.org/10.1016/S0196-8904(99)00115-6
  50. Touti, E., Masmali, M., Fterich, M., & Chouikhi, H.. (2023). Experimental and numerical study of the PVT design impact on the electrical and thermal performances. Case Studies in Thermal Engineering, 43, 102732. https://doi.org/10.1016/j.csite.2023.102732
  51. Vengadesan, E., & Senthil, R. (2020). A review on recent developments in thermal performance enhancement methods of flat plate solar air collector. Renewable and Sustainable Energy Reviews, 134, 110315. https://doi.org/10.1016/j.rser.2020.110315
  52. Wai, O. J., Gunnasegaran, P., & Hasini, H. (2022). Effect of Hybrid Nanofluids Concentration and Swirling Flow on Jet Impingement Cooling. Nanomaterials, 12(19), 3258; https://doi.org/10.3390/nano12193258
  53. Wattana, B., & Aungyut, P.. (2022). Impacts of Solar Electricity Generation on the Thai Electricity Industry. International Journal of Renewable Energy Development, 11(1), 157–163. https://doi.org/10.14710/ijred.2022.41059
  54. Yadav, S., & Saini, R. P. (2020). Numerical investigation on the performance of a solar air heater using jet impingement with absorber plate. Solar Energy, 208, 236–248. https://doi.org/10.1016/j.solener.2020.07.088
  55. Zarei, A., Liravi, M., Babaie Rabiee, M., & Ghodrat, M.. (2020). A Novel, eco-friendly combined solar cooling and heating system, powered by hybrid Photovoltaic thermal (PVT) collector for domestic application. Energy Conversion and Management, 222, 113198. https://doi.org/10.1016/j.enconman.2020.113198

Last update:

  1. The reversed circular flow jet impingement (RCFJI) PV/T collector: Thermohydraulic and electrohydraulic analysis

    Muhammad Amir Aziat Bin Ishak, Adnan Ibrahim. Heat Transfer, 53 (8), 2024. doi: 10.1002/htj.23129
  2. Sustainable Energy Progress via Integration of Thermal Energy Storage and Other Performance Enhancement Strategies in FPCs: A Synergistic Review

    Sudhir Kumar Pathak, Tagamud Tazmeen, K. Chopra, V. V. Tyagi, Sanjeev Anand, Ammar M. Abdulateef, A. K. Pandey. Sustainability, 15 (18), 2023. doi: 10.3390/su151813749
  3. Performance characterization of a novel PV/T panel with nanofluids under the climatic conditions of Muscat, Oman

    Afzal Husain, Nabeel Z. Al-Rawahi, Nasser A. Al-Azri, Mohammed Al-Naabi, Musaab El-Tahir. International Journal of Renewable Energy Development, 12 (5), 2023. doi: 10.14710/ijred.2023.53287
  4. Energy performance evaluation of a photovoltaic thermal phase change material (PVT-PCM) using a spiral flow configuration

    Muhammad Syazwan Bin Aziz, Adnan Ibrahim, Muhammad Amir Aziat Bin Ishak. International Journal of Renewable Energy Development, 12 (5), 2023. doi: 10.14710/ijred.2023.56052

Last update: 2025-01-01 04:54:46

No citation recorded.