skip to main content

Biogas Production in Dairy Farming in Indonesia: A Challenge for Sustainability

1Research and Development Office, Pati Regency, Jalan Sudirman No. 26 Pati, Central Java 59113, Indonesia

2Graduate Program of Environmental Science, Universitas Padjadjaran, Jalan Sekeloa Selatan I Bandung 40132, Indonesia

3Twente Centre for Studies in Technology and Sustainable Development-CSTM, University of Twente, PO Box 217, 7500 AE, Enschede, Netherlands

Published: 15 Oct 2015.
Editor(s): H Hadiyanto

Citation Format:
Abstract

Biogas plays an important role in supporting and ensuring the dairy farming sector remains sustainable. Biogas technology is not only as a method to dispose dairy farming waste but also benefiting economically, socially and environmentally. Biogas technology has been introduced since 1970s and many biogas programmes have been implemented in Indonesia. However compare to other countries like China and India, the dissemination of biogas technology in Indonesia runs quite slowly. There are several factors such as financial, policies and people’s perception hindering biogas use regarding the increase of biogas plants installed in Indonesia. In addition, many installed biogas plants are non-functional due to inadequate maintenance causing users stop to operate biogas plants and influencing potential users to reject adopting the technology. This paper provides an overview of biogas production sustainability which consists of five sustainability dimensions: technical, economic, social, environmental and organizational/institutional sustainability. Understanding the biogas sustainability helps stakeholders to realize that in order to promote biogas technology many sectors must be developed and many institutions must be involved and cooperated. The sustainability of biogas will determine the success of biogas dissemination particularly in dairy farming in the future.

 

Fulltext View|Download
Keywords: biogas; dairy farming; sustainability

Article Metrics:

  1. Alamsyah, P., & Hermawati, W. (2011). Kajian Pola Pembiayaan Biogas dalam Mendukung Pembangunan Desa Mandiri Energi, Studi Kasus : Desa Haurngombong, Sumedang.Prosiding Seminar Nasional Peran Jejaring Dalam Meningkatkan Inovasi dan Daya Saing Bisnis
  2. Al Seadi, T., Rutz, D., Prassl, H., Köttner, M., Finsterwalder, T., Volk, S., et al. (2008). Biogas Handbook. Esbjerg University of Southern Denmark
  3. Amon, B., Kryvoruchko, V., Amon, T., & Zechmeister-Boltenstern, S. (2006). Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment. Agriculture, Ecosystems and Environment, 112, 153–162
  4. An, B. X. (1997). The Role of Low-cost Plastic Tube Biodigesters in Integrated Farming Systems in Vietnam. Proceeding of Second FAO Electronic Conference on Tropical Feeds (pp. 277-294)
  5. Avery, L. M., Anchang, K. Y., Tumwesige, V., Strachan, N., & Goude, P. J. (2014). Potential for Pathogen reduction in anaerobic digestion and biogas generation in Sub-Saharan Africa. Biomass and Bioenergy, 70, 112-124
  6. Bahri, S. (2008). Strategy and Programmes of Livestock Development in Indonesia. Prosiding Seminar Nasional Teknologi Peternakan dan Veteriner 2008 (pp. 4-14)
  7. Bedi, Arjun; Benscha, Gunther ; Niemanna, Rebecca ; Peters, Jörg; Sparrow, Robert ; Tasciotti, Luca. (2012). Impact Evaluation of the Indonesia Domestic Biogas Programme. Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Essen, German and International Institute of Social Studies, Erasmus University, Rotterdam, The Netherlands
  8. Bhattacharyya, S. C. (2012). Energy access programmes and sustainable development: A critical review and analysis. Energy for Sustainable Development, 16, 260–271
  9. Bond, T., & Templeton, M. R. (2011). History and Future of Domestic Biogas Plants in the Developing World. Energy for Sustainable Development, 15 , 347-354
  10. BPS. (2014). Statistical Yearbook of Indonesia 2014. Jakarta
  11. Budiarto, R., Ridwan, M. K., Haryoko, A., Anwar, Y. S., Suhono, & Suryopratomo, K. (2013). Sustainability challenge for small scale renewable energy use in Yogyakarta. Procedia Environmental Science, 17, 513 – 518
  12. Budya, H., & Arofat, M. Y. (2011). Providing cleaner energy access in Indonesia through the mega project of kerosene conversion to LPG. Energy Policy, 39 , 7575–7586
  13. Chakrabarty, S., Boksh, F. M., & Chakraborty, A. (2013). Economic viability of biogas and green self-employment opportunities. Renewable and Sustainable Energy Reviews, 28, 757-766
  14. Chand, M. B., Upadhyay, B. P., & Maskey, R. (2012). Biogas Option for Mitigating and Adaptation of Climate Change. Proceeding of Rentech Symposium Compendium, (pp. 5-9)
  15. Cheng, S., Li, Z., Mang, H.-P., & Huba, E.-M. (2013). A review of prefabricated biogas digesters in China. Renewable and Sustainable Energy Reviews 28 , 738–748
  16. Clancy, J., & Roehr, U. (2003). Gender and energy: is there a Northern perspective?. Energy for Sustainable Development, 7(3), 44-49
  17. Clemens, J., Trimborn, M., Weiland, P., & Amon, B. (2006). Mitigation of Greenhouse Gas Emissions by Anaerobic Digestion of Cattle Slurry. Agriculture, Ecosystems and Environment, 112, 171–177
  18. Cornejo, C., & Wilkie, A. C. (2010). Greenhouse gas emissions and biogas potential from livestock in Ecuador. Energy for Sustainable Development, 14, 256–266
  19. Ding, W., Wang, L., Chen, B., Xu, L., & Li, H. (2014). Impacts of renewable energy on gender in rural communities of north-west China. Renewable Energy, 69, 180-189
  20. El-Mashad, H. M., & Zhang, R. (2010). Biogas production from co-digestion of dairy manure and food waste. Bioresource Technology, 101, 4021-4028
  21. Fallde, M., & Eklund, M. (2014). Towards a sustainable socio-technical system of biogas for transport: the case of the city of Linkoping in Sweden.Journal of Cleaner Production. 1-12
  22. FAO. 2010. Greenhouse Gas Emissions from the Dairy Sector: A Life Cycle Assessment. Food and Agriculture Organization of the United Nations, Rome, Italy
  23. Frac, M., & Ziemiñski, K. (2012). Methane fermentation process for utilization of organic waste. International agrophysics, 26, 317-330
  24. Gosens, J., Yonglong, L., Guizhen, H., Bluemling, B., & Beckers, T. A. (2013). Sustainability effects of household-scale biogas in rural China. Energy Policy, 54, 273-287
  25. Hartiningsih & Setiawan, (2011). Pengaruh modal sosial dalam membangun kemandirian desa mandiri energi. ProsidingSeminar Nasional Peran Jejaring Dalam Meningkatkan Inovasi dan Daya Saing Bisnis
  26. Herawati, T., & Priyanto, D. (2013). Performance of Dairy Processing Industry in Supporting Self-Sufficiency of Milk in Indonesia). ProsidingSeminar Nasional Teknologi Peternakan dan Veteriner 2013 (pp. 234-249)
  27. Herdiawan, G., Kurnami, T. A., & Astuti, Y. (2014). Discontinuance Application of Innovation Biogas By Dairy Farmer (Case Study in Pagerageung District Tasikmalaya Regency). Jurnal Ilmu Ternak, 1(1), 1 – 6
  28. Hivos. (2014a). Final Report Indonesia Domestic Biogas Programme May 2009 - December 2013. Jakarta
  29. Hivos. (2014b). Interim Report Indonesia Domestic Biogas Programme January - June 2014. Jakarta
  30. Ilskog, E. (2008). Indicators for assessment of rural electrification—An approach for the. Energy Policy, 36, 2665-2673
  31. International Finance Corporation (IFC). (2011). Dairy Industry Development in Indonesia. Jakarta
  32. Kabir, H., Yegbemey, R. N., & Bauer, S. (2013). Factors determinant of biogas adoption in Bangladesh. Renewable and Sustainable Energy Reviews, 28, 881-889
  33. Kossmann, W., Pönitz, U., Habermehl, S., Hoerz, T., Krämer, P., Klingler, B. et al. (undated). Biogas Digest Volume I Biogas Basics. Eschborn: Information and Advisory Service on Appropriate Technology (ISAT) & Gesellschaft für Technische Zusammenarbeit (GTZ)
  34. Lam, J., & Heegde, F. t. (2011). Domestic Biogas Compact Course: Technology and Mass-Dissemination Experiences from Asia. Oldenburg University of Oldenburg
  35. Laramee, J., & Davis, J. (2013). Economic and environmental impacts of domestic bio-digesters: Evidence from Arusha, Tanzania. Energy for Sustainable Development, 17, 296–304
  36. Listyawati, R. N., Meidiana, C., & Anggraeni, M. (2014). Evaluation of energy self-sufficient village by means of emergy indices. Procedia Environmental Sciences,20, 30 – 39
  37. Macias-Corral, M., Samani, Z., Hanson, A., Smith, G., Funk, P., Yu, H., et al. (2008). Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure. Bioresource Technology, 8288–8293
  38. Marañón, E., Salter, A., Castrillón, L., Heaven, S., & Fernández-Nava, Y. (2011). Reducing the environmental impact of methane emissions from dairy farms by anaerobic digestion of cattle waste. Waste Management, 31, 1745–1751
  39. Marquardt, J. (2014). A Struggle of Multi-level Governance: Promoting Renewable Energy in Indonesia. Energy Procedia 58, 87 – 94
  40. Massé, D. I., Talbot, G., & Gilbert, Y. (2011). On Farm Biogas Production: a Method to Reduce GHG Emissions and Develop More Sustainable Livestock Operations. Animal Feed Science and Technology , 436– 445
  41. Moody, L. B., Burns, R. T., Bishop, G., Sell, S., & Spajic, R. (2011). Using biochemical methane potential assays to aid in co-substrate selection for co-digestion. Applied Engineering in Agriculture, 433-439
  42. Mwakaje, A. G. (2008). Dairy farming and biogas use in Rungwe district, South-west Tanzania: A study of opportunities and constraints. Renewable and Sustainable Energy Reviews, 12, 2240–2252
  43. Nurmalina, R., & Riesti, S. (2010). Analisis Biaya Manfaat Pengusahaan Sapi Perah Dan Pemanfaatan Limbah Untuk Menghasilkan Biogas Pada Kondisi Resiko (Studi Kasus : Kecamatan Cisarua dan Megamendung, Kabupaten Bogor Jawa Barat. Jurnal Pertanian, 17-34
  44. Oparaocha, S., & Dutta, S. (2011). Gender and energy for sustainable development. Environmental Sustainability, 3, 265-271
  45. Parikesit, Takeuchi, K., Tsunekawa, A., & Abdoellah, O. S. (2005). Resource analysis of small-scale dairy production system in an Indonesian village — a case study. Agriculture, Ecosystems and Environment,105, 541-554
  46. Pathak, H., Jain, N., Bhatia, A., Mohanty, S., & Gupta, N. (2009). Global warming mitigation potential of biogas plants in India. Environ Monit Assess, 157, 407-418
  47. Prasetyo, A., & Herawati, H. (2011). Pengaruh Kualitas Susu Terhadap Keuntungan Agribisnis Sapi Perah Skala Kecil di Jawa Tengah. Prosiding Semiloka Nasional “Dukungan Agro-Inovasi untuk Pemberdayaan Petani (pp. 840-845)
  48. Purwono, B. S., Suyanta, & Rahbini. (2013). Biogas digester as an alternative energy strategy in the marginal villages in Indonesia. Energy Procedia 32 , 136 – 144
  49. Putri, D., Saputro, R., & Budiyono. (2012). Biogas Production from Cow Manure. Int. Journal of Renewable Energy Development 1 (2), 61-64
  50. Rico, C., Diego, R., Valcarce, A., & Rico, J. L. (2014). Biogas Production from Various Typical Organic Wastes Generated in the Region of Cantabria (Spain): Methane Yields and Co-Digestion Tests. Smart Grid and Renewable Energy , 128-136
  51. Rosyidi, S. A., Bole-Rentel, T., Lesmana, S. B., & Ikhsan, J. (2014 ). Lessons Learnt from the Energy Needs Assessment carried out for the Biogas Program for Rural Development in Yogyakarta, Indonesia. Procedia Environmental Sciences, 20, 20 – 29
  52. Sayaka, B., & Rivai, R. S. (2011). Enhancing Farmers’ Access to Food Security and Energy Credit. Prosiding Seminar Pembangunan Pertanian dan Perdesaan (pp. 188-208)
  53. Schnürer, A., & Jarvis, Å. (2010). Microbiological Handbook for Biogas Plants. Malmö: Swedish Waste Management
  54. Scialabba, N. E.-H., & Muller-Lindenlauf, M. (2010). Organic agriculture and climate change. Renewable Agriculture and Food Systems, 25(2), 158–169
  55. Sharma, S., & Nema, B. P. (2013). Applicability of Biogas Technology in Rural Development and Green House Gas Mitigation. International Journal of ChemTech Research, 5(2), 747-752
  56. Singh, R., & Setiawan, A. D. (2013). Biomass energy policies and strategies:Harvesting potential in India and Indonesia. Renewable and Sustainable Energy Reviews, 22, 332–345
  57. SNV. (2011). International Workshop on “Domestic biogas programmes in Asia: transformation towards commercial sectors and development of effective financing facilities”. Bandung: SNV
  58. Sun, D., Bai, J., Qiu, H., & Cai, Y. (2014). Impact of government subsidies on household biogas use in rural China. Energy Policy, 73, 748–756
  59. Surendra, K., Takara, D., Hashimoto, A. G., & Khanal, S. K. (2014). Biogas as a sustainable energy source for developing countries: Opportunities and challenges. Renewable and Sustainable Energy Reviews, 31, 846-859
  60. Swastika, D. K. S. (2011). Membangun Kemandirian Dan Kedaulatan Pangan Untuk Mengentaskan Petani Dari Kemiskinan. Pengembangan Inovasi Pertanian, 4(2), 103-117
  61. The Japan Institute of Energy. (2008). Buku Panduan Biomassa Asia . Tokyo: The Japan Institute of Energy
  62. United Nations. (2007). Indicators of Sustainable Development: Guidelines and Methodologies. New York: United Nations
  63. Wahyudi, J. (2013). Identifikasi Faktor-faktor yang Mempengaruhi Pengembangan Biogas di Peternakan Sapi Perah. Pati
  64. Widodo, T. W., & Hendriadi, A. (2005). Development of Biogas Processing for Small Scale Farm in Indonesia. Proceeding of International Seminar on Biogas Technology for Poverty Reduction and Sustainable Development, (pp. 1-7)
  65. Widodo, T. W., Asari, A., Ana, N., & Elita, R. (2009). Design And Development Of Biogas Reactor For Farmer Group Scale. Indonesian Journal of Agriculture, 2(2), 121-128
  66. Widyastuti, F. R., Purwanto, & Hadiyanto. (2013). Biogas Potential from the Treatment of Solid Waste of Dairy Cattle: Case Study at Bangka Botanical Garden Pangkalpinang. International Journal of Waste Resources, 3: 128
  67. Wilkinson, K. G. (2011). Review A comparison of the drivers influencing adoption of on-farm anaerobic digestion in Germany and Australia. Biomass and Bioenergy, 35, 1613-1622
  68. Zheng, Z., Liu, J., Yuan, X., Wang, X., Zhua, W., Yang, F., et al. (2015). Effect of dairy manure to switchgrass co-digestion ratio on methane production and the bacterial community in batch anaerobic digestion. Applied Energy, 249–257

Last update:

  1. Total Economic Value of Smallholder Dairy Farm in Java Island Indonesia

    Tri Anggraeni Kusumastut, Mohammad Zainal Abidin, Rini Widiati. International Journal of Dairy Science, 19 (1), 2024. doi: 10.3923/ijds.2024.8.17
  2. Rice husk as renewable energy for biogas production from biomass: prospect and challenges

    Ayudya Izzati Dyah Lantasi, Syafrudin, Budiyono, B. Warsito, Sudarno, T. Triadi Putranto. E3S Web of Conferences, 202 , 2020. doi: 10.1051/e3sconf/202020206024
  3. Dairy cattle manure utilization by smallholder dairy farmers in West Java, Indonesia

    Ening Ariningsih, Erwidodo, Aldho Riski Irawan, Handewi Purwati Saliem, Widodo, Susanawati, M. Senge, A.A. Aziz, Y. Witono, J. Sharifuddin, A.B. Robani, B. Krisnamurthi, P. Saiyut, J.H. Mulyo, M.F. bin Kamarudin, M.M. Tjale. E3S Web of Conferences, 361 , 2022. doi: 10.1051/e3sconf/202236103013
  4. Biogas Utilization in KPBS Pangalengan: History and Challenges

    Pramujo Widiatmoko, Jenny Rizkiana, Susilo Yuwono, Mohammad Taufiq, Candra Purnama Hadi. IOP Conference Series: Materials Science and Engineering, 1143 (1), 2021. doi: 10.1088/1757-899X/1143/1/012032
  5. Technical and social assessment of biogas in Yogyakarta and Gorontalo, Indonesia

    D Y N Naimah, M A Wuri, A Pertiwiningrum, R Budiarto, T P Handayani. IOP Conference Series: Earth and Environmental Science, 471 (1), 2020. doi: 10.1088/1755-1315/471/1/012006
  6. Barriers and opportunities to bioenergy transitions: An integrated, multi-level perspective analysis of biogas uptake in Bali

    Stefan Bößner, Tahia Devisscher, Timothy Suljada, Cynthia J. Ismail, Auditya Sari, Novelita W. Mondamina. Biomass and Bioenergy, 122 , 2019. doi: 10.1016/j.biombioe.2019.01.002
  7. Out of sight, out of mind? The importance of local context and trust in understanding the social acceptance of biogas projects: A global scale review

    Eliana Mancini, Andrea Raggi. Energy Research & Social Science, 91 , 2022. doi: 10.1016/j.erss.2022.102697
  8. Integration of anaerobic digestion with artificial intelligence to optimise biogas plant operation

    Siddharth Swami, Surindra Suthar, Rajesh Singh, Amit Kumar Thakur, Lovi Raj Gupta, Vineet Singh Sikarwar. Environment, Development and Sustainability, 2023. doi: 10.1007/s10668-023-04326-2
  9. Community attitudes towards biogas as an alternative energy and environmental quality improvement

    M Z Arifin, M Khoir, B E Purwanto. Journal of Physics: Conference Series, 1517 (1), 2020. doi: 10.1088/1742-6596/1517/1/012043
  10. Civic Engagement in Asia

    Niken Arumdati. 2022. doi: 10.1007/978-981-16-9384-7_9
  11. Effect of biomass co-digestion and application of artificial intelligence in biogas production: A review

    Moses Oluwatobi Fajobi, Olumuyiwa Ajani Lasode, Adekunle Akanni Adeleke, Peter Pelumi Ikubanni, Ayokunle Olubusayo Balogun. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44 (2), 2022. doi: 10.1080/15567036.2022.2085823
  12. Biogas production using manure from KPBS Pangalengan’s dairy farm and its role in reducing Citarum river pollution

    Pramujo Widiatmoko, Jenny Rizkiana, Susilo Yuwono, Mohammad Taufiq, Candra Purnama Hadi. IOP Conference Series: Materials Science and Engineering, 823 (1), 2020. doi: 10.1088/1757-899X/823/1/012020
  13. How Does Indonesian Scientific Production on Renewable Energy Successfully Support the Policy Design? A Journey Towards Sustainable Energy Transition

    Iqbal Akbar, Dhandy Arisaktiwardhana, Prima Naomi. Problemy Ekorozwoju, 15 (2), 2020. doi: 10.35784/pe.2020.2.05
  14. Generating Renewable Energy from Municipal Waste Sector: A Comparative Study between Japan and Indonesia

    Jatmiko Wahyudi, Mayang Rahmi Novitasari. International Journal of Environmental Science and Development, 9 (12), 2018. doi: 10.18178/ijesd.2018.9.12.1133
  15. Potential Processing of Biogas Products for the Needs of Villagers in Jimbaran Village, Puspo District, Pasuruan Regency

    Amala Ikbar Farrah, Gunawan Prayitno, Beta Dwiyanti Alfisyah, Yulia Faizatul Arizkha, Zahara Azizah Nur. Journal of Applied And Theoretical Social Sciences, 3 (1), 2021. doi: 10.37241/jatss.2021.23
  16. Challenges in Implementing Emission Mitigation Technologies in Indonesia Agricultural Sector: Criticizing the Available Mitigation Technologies

    Marissa Malahayati, Toshihiko Masui. Open Agriculture, 3 (1), 2018. doi: 10.1515/opag-2018-0006

Last update: 2024-10-13 13:48:32

  1. Biogas as a promising energy source for sumatra (review)

    Roubík H.. TAE 2016 - Proceedings of 6th International Conference on Trends in Agricultural Engineering 2016, 127 , 2016.
  2. Factors affecting the success of local innovation systems with government programs as moderators

    Sihombing M.. International Journal of Economic Research, 14 (20), 2017.
  3. Rice husk as renewable energy for biogas production from biomass: prospect and challenges

    Ayudya Izzati Dyah Lantasi, Syafrudin, Budiyono, B. Warsito, Sudarno, T. Triadi Putranto. E3S Web of Conferences, 202 , 2020. doi: 10.1051/e3sconf/202020206024
  4. Biogas from cattle dung as a source of sustainable energy: A feasibility study

    Kumar K.A.. International Journal of Energy Economics and Policy, 10 (6), 2020. doi: 10.32479/ijeep.10135
  5. Seaweed Sargassum sp. as material for biogas production

    Irfan M.. AACL Bioflux, 12 (5), 2019.
  6. Lessons from Bali for small-scale biogas development in Indonesia

    Silaen M.. Environmental Innovation and Societal Transitions, 35 , 2020. doi: 10.1016/j.eist.2019.09.003
  7. Barriers and opportunities to bioenergy transitions: An integrated, multi-level perspective analysis of biogas uptake in Bali

    Stefan Bößner, Tahia Devisscher, Timothy Suljada, Cynthia J. Ismail, Auditya Sari, Novelita W. Mondamina. Biomass and Bioenergy, 122 , 2019. doi: 10.1016/j.biombioe.2019.01.002
  8. Community attitudes towards biogas as an alternative energy and environmental quality improvement

    M Z Arifin, M Khoir, B E Purwanto. Journal of Physics: Conference Series, 1517 (1), 2020. doi: 10.1088/1742-6596/1517/1/012043
  9. Biogas production using manure from KPBS Pangalengan's dairy farm and its role in reducing Citarum river pollution

    Widiatmoko P.. IOP Conference Series: Materials Science and Engineering, 127 (1), 2020. doi: 10.1088/1757-899X/823/1/012020
  10. How Does Indonesian Scientific Production on Renewable Energy Successfully Support the Policy Design? A Journey Towards Sustainable Energy Transition

    Iqbal Akbar, Dhandy Arisaktiwardhana, Prima Naomi. Problemy Ekorozwoju, 15 (2), 2020. doi: 10.35784/pe.2020.2.05
  11. Suitability of small-scale biogas systems based on livestock manure for the rural areas of Sumatra

    Roubík H.. Environmental Development, 33 , 2020. doi: 10.1016/j.envdev.2020.100505
  12. Challenges in Implementing Emission Mitigation Technologies in Indonesia Agricultural Sector: Criticizing the Available Mitigation Technologies

    Marissa Malahayati, Toshihiko Masui. Open Agriculture, 3 (1), 2018. doi: 10.1515/opag-2018-0006