Biogas Production in Dairy Farming in Indonesia: A Challenge for Sustainability

DOI: https://doi.org/10.14710/ijred.4.3.219-226

Article Metrics: (Click on the Metric tab below to see the detail)

Article Info
Published: 15-10-2015
Section: Original Research Article
Fulltext PDF Tell your colleagues Email the author

Biogas plays an important role in supporting and ensuring the dairy farming sector remains sustainable. Biogas technology is not only as a method to dispose dairy farming waste but also benefiting economically, socially and environmentally. Biogas technology has been introduced since 1970s and many biogas programmes have been implemented in Indonesia. However compare to other countries like China and India, the dissemination of biogas technology in Indonesia runs quite slowly. There are several factors such as financial, policies and people’s perception hindering biogas use regarding the increase of biogas plants installed in Indonesia. In addition, many installed biogas plants are non-functional due to inadequate maintenance causing users stop to operate biogas plants and influencing potential users to reject adopting the technology. This paper provides an overview of biogas production sustainability which consists of five sustainability dimensions: technical, economic, social, environmental and organizational/institutional sustainability. Understanding the biogas sustainability helps stakeholders to realize that in order to promote biogas technology many sectors must be developed and many institutions must be involved and cooperated. The sustainability of biogas will determine the success of biogas dissemination particularly in dairy farming in the future.

 

Keywords

biogas; dairy farming; sustainability

  1. Jatmiko Wahyudi 
    Research and Development Office, Pati Regency, Jalan Sudirman No. 26 Pati, Central Java 59113, Indonesia
  2. Tb. Benito Achmad Kurnani 
    Graduate Program of Environmental Science, Universitas Padjadjaran, Jalan Sekeloa Selatan I Bandung 40132, Indonesia
  3. Joy Clancy 
    Twente Centre for Studies in Technology and Sustainable Development-CSTM, University of Twente, PO Box 217, 7500 AE, Enschede, Netherlands
  1. Alamsyah, P., & Hermawati, W. (2011). Kajian Pola Pembiayaan Biogas dalam Mendukung Pembangunan Desa Mandiri Energi, Studi Kasus : Desa Haurngombong, Sumedang.Prosiding Seminar Nasional Peran Jejaring Dalam Meningkatkan Inovasi dan Daya Saing Bisnis.
  2. Al Seadi, T., Rutz, D., Prassl, H., Köttner, M., Finsterwalder, T., Volk, S., et al. (2008). Biogas Handbook. Esbjerg University of Southern Denmark.
  3. Amon, B., Kryvoruchko, V., Amon, T., & Zechmeister-Boltenstern, S. (2006). Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment. Agriculture, Ecosystems and Environment, 112, 153–162.
  4. An, B. X. (1997). The Role of Low-cost Plastic Tube Biodigesters in Integrated Farming Systems in Vietnam. Proceeding of Second FAO Electronic Conference on Tropical Feeds (pp. 277-294).
  5. Avery, L. M., Anchang, K. Y., Tumwesige, V., Strachan, N., & Goude, P. J. (2014). Potential for Pathogen reduction in anaerobic digestion and biogas generation in Sub-Saharan Africa. Biomass and Bioenergy, 70, 112-124.
  6. Bahri, S. (2008). Strategy and Programmes of Livestock Development in Indonesia. Prosiding Seminar Nasional Teknologi Peternakan dan Veteriner 2008 (pp. 4-14).
  7. Bedi, Arjun; Benscha, Gunther ; Niemanna, Rebecca ; Peters, Jörg; Sparrow, Robert ; Tasciotti, Luca. (2012). Impact Evaluation of the Indonesia Domestic Biogas Programme. Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Essen, German and International Institute of Social Studies, Erasmus University, Rotterdam, The Netherlands.
  8. Bhattacharyya, S. C. (2012). Energy access programmes and sustainable development: A critical review and analysis. Energy for Sustainable Development, 16, 260–271.
  9. Bond, T., & Templeton, M. R. (2011). History and Future of Domestic Biogas Plants in the Developing World. Energy for Sustainable Development, 15 , 347-354.
  10. BPS. (2014). Statistical Yearbook of Indonesia 2014. Jakarta
  11. Budiarto, R., Ridwan, M. K., Haryoko, A., Anwar, Y. S., Suhono, & Suryopratomo, K. (2013). Sustainability challenge for small scale renewable energy use in Yogyakarta. Procedia Environmental Science, 17, 513 – 518.
  12. Budya, H., & Arofat, M. Y. (2011). Providing cleaner energy access in Indonesia through the mega project of kerosene conversion to LPG. Energy Policy, 39 , 7575–7586.
  13. Chakrabarty, S., Boksh, F. M., & Chakraborty, A. (2013). Economic viability of biogas and green self-employment opportunities. Renewable and Sustainable Energy Reviews, 28, 757-766.
  14. Chand, M. B., Upadhyay, B. P., & Maskey, R. (2012). Biogas Option for Mitigating and Adaptation of Climate Change. Proceeding of Rentech Symposium Compendium, (pp. 5-9).
  15. Cheng, S., Li, Z., Mang, H.-P., & Huba, E.-M. (2013). A review of prefabricated biogas digesters in China. Renewable and Sustainable Energy Reviews 28 , 738–748.
  16. Clancy, J., & Roehr, U. (2003). Gender and energy: is there a Northern perspective?. Energy for Sustainable Development, 7(3), 44-49.
  17. Clemens, J., Trimborn, M., Weiland, P., & Amon, B. (2006). Mitigation of Greenhouse Gas Emissions by Anaerobic Digestion of Cattle Slurry. Agriculture, Ecosystems and Environment, 112, 171–177.
  18. Cornejo, C., & Wilkie, A. C. (2010). Greenhouse gas emissions and biogas potential from livestock in Ecuador. Energy for Sustainable Development, 14, 256–266.
  19. Ding, W., Wang, L., Chen, B., Xu, L., & Li, H. (2014). Impacts of renewable energy on gender in rural communities of north-west China. Renewable Energy, 69, 180-189.
  20. El-Mashad, H. M., & Zhang, R. (2010). Biogas production from co-digestion of dairy manure and food waste. Bioresource Technology, 101, 4021-4028.
  21. Fallde, M., & Eklund, M. (2014). Towards a sustainable socio-technical system of biogas for transport: the case of the city of Linkoping in Sweden.Journal of Cleaner Production. 1-12
  22. FAO. 2010. Greenhouse Gas Emissions from the Dairy Sector: A Life Cycle Assessment. Food and Agriculture Organization of the United Nations, Rome, Italy.
  23. Frac, M., & Ziemiñski, K. (2012). Methane fermentation process for utilization of organic waste. International agrophysics, 26, 317-330.
  24. Gosens, J., Yonglong, L., Guizhen, H., Bluemling, B., & Beckers, T. A. (2013). Sustainability effects of household-scale biogas in rural China. Energy Policy, 54, 273-287.
  25. Hartiningsih & Setiawan, (2011). Pengaruh modal sosial dalam membangun kemandirian desa mandiri energi. ProsidingSeminar Nasional Peran Jejaring Dalam Meningkatkan Inovasi dan Daya Saing Bisnis.
  26. Herawati, T., & Priyanto, D. (2013). Performance of Dairy Processing Industry in Supporting Self-Sufficiency of Milk in Indonesia). ProsidingSeminar Nasional Teknologi Peternakan dan Veteriner 2013 (pp. 234-249).
  27. Herdiawan, G., Kurnami, T. A., & Astuti, Y. (2014). Discontinuance Application of Innovation Biogas By Dairy Farmer (Case Study in Pagerageung District Tasikmalaya Regency). Jurnal Ilmu Ternak, 1(1), 1 – 6.
  28. Hivos. (2014a). Final Report Indonesia Domestic Biogas Programme May 2009 - December 2013. Jakarta
  29. Hivos. (2014b). Interim Report Indonesia Domestic Biogas Programme January - June 2014. Jakarta
  30. Ilskog, E. (2008). Indicators for assessment of rural electrification—An approach for the. Energy Policy, 36, 2665-2673.
  31. International Finance Corporation (IFC). (2011). Dairy Industry Development in Indonesia. Jakarta
  32. Kabir, H., Yegbemey, R. N., & Bauer, S. (2013). Factors determinant of biogas adoption in Bangladesh. Renewable and Sustainable Energy Reviews, 28, 881-889.
  33. Kossmann, W., Pönitz, U., Habermehl, S., Hoerz, T., Krämer, P., Klingler, B. et al. (undated). Biogas Digest Volume I Biogas Basics. Eschborn: Information and Advisory Service on Appropriate Technology (ISAT) & Gesellschaft für Technische Zusammenarbeit (GTZ).
  34. Lam, J., & Heegde, F. t. (2011). Domestic Biogas Compact Course: Technology and Mass-Dissemination Experiences from Asia. Oldenburg University of Oldenburg.
  35. Laramee, J., & Davis, J. (2013). Economic and environmental impacts of domestic bio-digesters: Evidence from Arusha, Tanzania. Energy for Sustainable Development, 17, 296–304.
  36. Listyawati, R. N., Meidiana, C., & Anggraeni, M. (2014). Evaluation of energy self-sufficient village by means of emergy indices. Procedia Environmental Sciences,20, 30 – 39.
  37. Macias-Corral, M., Samani, Z., Hanson, A., Smith, G., Funk, P., Yu, H., et al. (2008). Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure. Bioresource Technology, 8288–8293.
  38. Marañón, E., Salter, A., Castrillón, L., Heaven, S., & Fernández-Nava, Y. (2011). Reducing the environmental impact of methane emissions from dairy farms by anaerobic digestion of cattle waste. Waste Management, 31, 1745–1751.
  39. Marquardt, J. (2014). A Struggle of Multi-level Governance: Promoting Renewable Energy in Indonesia. Energy Procedia 58, 87 – 94.
  40. Massé, D. I., Talbot, G., & Gilbert, Y. (2011). On Farm Biogas Production: a Method to Reduce GHG Emissions and Develop More Sustainable Livestock Operations. Animal Feed Science and Technology , 436– 445.
  41. Moody, L. B., Burns, R. T., Bishop, G., Sell, S., & Spajic, R. (2011). Using biochemical methane potential assays to aid in co-substrate selection for co-digestion. Applied Engineering in Agriculture, 433-439.
  42. Mwakaje, A. G. (2008). Dairy farming and biogas use in Rungwe district, South-west Tanzania: A study of opportunities and constraints. Renewable and Sustainable Energy Reviews, 12, 2240–2252.
  43. Nurmalina, R., & Riesti, S. (2010). Analisis Biaya Manfaat Pengusahaan Sapi Perah Dan Pemanfaatan Limbah Untuk Menghasilkan Biogas Pada Kondisi Resiko (Studi Kasus : Kecamatan Cisarua dan Megamendung, Kabupaten Bogor Jawa Barat. Jurnal Pertanian, 17-34.
  44. Oparaocha, S., & Dutta, S. (2011). Gender and energy for sustainable development. Environmental Sustainability, 3, 265-271.
  45. Parikesit, Takeuchi, K., Tsunekawa, A., & Abdoellah, O. S. (2005). Resource analysis of small-scale dairy production system in an Indonesian village — a case study. Agriculture, Ecosystems and Environment,105, 541-554.
  46. Pathak, H., Jain, N., Bhatia, A., Mohanty, S., & Gupta, N. (2009). Global warming mitigation potential of biogas plants in India. Environ Monit Assess, 157, 407-418.
  47. Prasetyo, A., & Herawati, H. (2011). Pengaruh Kualitas Susu Terhadap Keuntungan Agribisnis Sapi Perah Skala Kecil di Jawa Tengah. Prosiding Semiloka Nasional “Dukungan Agro-Inovasi untuk Pemberdayaan Petani (pp. 840-845).
  48. Purwono, B. S., Suyanta, & Rahbini. (2013). Biogas digester as an alternative energy strategy in the marginal villages in Indonesia. Energy Procedia 32 , 136 – 144.
  49. Putri, D., Saputro, R., & Budiyono. (2012). Biogas Production from Cow Manure. Int. Journal of Renewable Energy Development 1 (2), 61-64.
  50. Rico, C., Diego, R., Valcarce, A., & Rico, J. L. (2014). Biogas Production from Various Typical Organic Wastes Generated in the Region of Cantabria (Spain): Methane Yields and Co-Digestion Tests. Smart Grid and Renewable Energy , 128-136.
  51. Rosyidi, S. A., Bole-Rentel, T., Lesmana, S. B., & Ikhsan, J. (2014 ). Lessons Learnt from the Energy Needs Assessment carried out for the Biogas Program for Rural Development in Yogyakarta, Indonesia. Procedia Environmental Sciences, 20, 20 – 29.
  52. Sayaka, B., & Rivai, R. S. (2011). Enhancing Farmers’ Access to Food Security and Energy Credit. Prosiding Seminar Pembangunan Pertanian dan Perdesaan (pp. 188-208).
  53. Schnürer, A., & Jarvis, Å. (2010). Microbiological Handbook for Biogas Plants. Malmö: Swedish Waste Management.
  54. Scialabba, N. E.-H., & Muller-Lindenlauf, M. (2010). Organic agriculture and climate change. Renewable Agriculture and Food Systems, 25(2), 158–169.
  55. Sharma, S., & Nema, B. P. (2013). Applicability of Biogas Technology in Rural Development and Green House Gas Mitigation. International Journal of ChemTech Research, 5(2), 747-752.
  56. Singh, R., & Setiawan, A. D. (2013). Biomass energy policies and strategies:Harvesting potential in India and Indonesia. Renewable and Sustainable Energy Reviews, 22, 332–345.
  57. SNV. (2011). International Workshop on “Domestic biogas programmes in Asia: transformation towards commercial sectors and development of effective financing facilities”. Bandung: SNV.
  58. Sun, D., Bai, J., Qiu, H., & Cai, Y. (2014). Impact of government subsidies on household biogas use in rural China. Energy Policy, 73, 748–756.
  59. Surendra, K., Takara, D., Hashimoto, A. G., & Khanal, S. K. (2014). Biogas as a sustainable energy source for developing countries: Opportunities and challenges. Renewable and Sustainable Energy Reviews, 31, 846-859.
  60. Swastika, D. K. S. (2011). Membangun Kemandirian Dan Kedaulatan Pangan Untuk Mengentaskan Petani Dari Kemiskinan. Pengembangan Inovasi Pertanian, 4(2), 103-117.
  61. The Japan Institute of Energy. (2008). Buku Panduan Biomassa Asia . Tokyo: The Japan Institute of Energy.
  62. United Nations. (2007). Indicators of Sustainable Development: Guidelines and Methodologies. New York: United Nations.
  63. Wahyudi, J. (2013). Identifikasi Faktor-faktor yang Mempengaruhi Pengembangan Biogas di Peternakan Sapi Perah. Pati.
  64. Widodo, T. W., & Hendriadi, A. (2005). Development of Biogas Processing for Small Scale Farm in Indonesia. Proceeding of International Seminar on Biogas Technology for Poverty Reduction and Sustainable Development, (pp. 1-7).
  65. Widodo, T. W., Asari, A., Ana, N., & Elita, R. (2009). Design And Development Of Biogas Reactor For Farmer Group Scale. Indonesian Journal of Agriculture, 2(2), 121-128.
  66. Widyastuti, F. R., Purwanto, & Hadiyanto. (2013). Biogas Potential from the Treatment of Solid Waste of Dairy Cattle: Case Study at Bangka Botanical Garden Pangkalpinang. International Journal of Waste Resources, 3: 128.
  67. Wilkinson, K. G. (2011). Review A comparison of the drivers influencing adoption of on-farm anaerobic digestion in Germany and Australia. Biomass and Bioenergy, 35, 1613-1622.
  68. Zheng, Z., Liu, J., Yuan, X., Wang, X., Zhua, W., Yang, F., et al. (2015). Effect of dairy manure to switchgrass co-digestion ratio on methane production and the bacterial community in batch anaerobic digestion. Applied Energy, 249–257.