skip to main content

Kinetic and thermodynamic study of composite with jute fiber as reinforcement

1Laboratoire de Thermodynamique et Physico-Chimie des Matériaux, Université Nangui Abrogoua, Abidjan, Côte d’Ivoire

2Department of Physics, Kenyatta University P.O.BOX 43844-00100, Nairobi, Kenya

3Department of Physics, Worcester Polytechnic Institute 100 Institute Road, Worcester MA, 01609-2280, United States

Received: 18 May 2023; Revised: 15 Oct 2023; Accepted: 31 Oct 2023; Available online: 5 Nov 2023; Published: 15 Jan 2024.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:

In the present work, engineered by compression molding process via a hydraulic press, the A and B composite samples were carried out with 5% and 10% ratio respectively of Ricinodendron heudelotii oil-based alkyd resin in bio-based matrix made of unsaturated polyester using jute fibers as reinforcement material. The samples’ thermal decomposition was performed through thermogravimetry (TG) and derivative thermogravimetry (DTG) analyses. Both composite samples exhibit two stages of decomposition, where the main occurs at 200 - 550°C. Aiming to study and being able to model the thermal degradation of the elaborated composites, finding the kinetic triplets appears the best option to describe the kinetic process undergo by the composites in order to evaluate the performance application of the composites. Two non-isothermal techniques, Flynn-Wall-Ozawa (FWO) and Kissinger have been used to assess the activation energy Ea, and it is found that the apparent activation energy varies with the degree of conversion indicating that both composites decompose with a multiple step mechanism process. The appropriate reaction model for the second stage of decomposition was best suited with Johnson-Mel-Avrami (n<1) model and has been established, allowing us to model thermal degradation behavior of our elaborated composite material and set predictions. The estimated Arrhenius factor values were respectively about A and B composites, 4.12.1015 min-1 and 10.42.1015 min-1, allowing us to set the final equation characterizing the degradation process for the second and main decomposition stage. Finally, as a result of comparison between A and B composites, A appears to be the more thermally stable due to its lower values of Arrhenius pre-exponential factor over the main stage of decomposition and higher calculated the activation energy values.

Fulltext View|Download
Keywords: Natural Fiber; Activation energy; Thermal degradation; Kinetic model; Thermal modelling
Funding: CSIR-India and TWAS-Italy for award of the CSIR-TWAS fellowship for postgraduate studies at CSIR-NEIST, Jorhat

Article Metrics:

  1. Arrakhiz, F. Z., Achaby, M. El, Malha, M., Bensalah, M. O., Fassi-fehri, O., Bouhfid, R., Benmoussa, K., & Qaiss, A. (2013). Mechanical and thermal properties of natural fibers reinforced polymer composites: Doum / low density polyethylene. Journal of materials and design, 43, 200–205.
  2. Assanvo, E. F., Gogoi, P., Dolui, S. K., & Baruah, S. D. (2015). Synthesis, characterization, and performance characteristics of alkyd resins based on Ricinodendron heudelotii oil and their blending with epoxy resins. Industrial Crops and Products, 65, 293–302.
  3. Assanvo, E. F., Konwar, D., & Baruah, S. D. (2015). Thermal behavior of Ricinodendron heudelotii oil polymer. Journal of Thermal Analysis and Calorimetry, 119(3), 1995–2003.
  4. Butler, S. (2018). Contrôle Et Optimisation D'un procédé De Fabrication De Mousses Acoustiques Thermodurcissables à porosité Ouverte (Doctoral dissertation, Ecole Polytechnique, Montreal (Canada))
  5. Barsoum, I. (2011). Chapter 17. In The Scattered Pearls: A History of Syriac Literature and Sciences (pp. 318-337). Piscataway, NJ, USA: Gorgias Press.
  6. Chen, R. S., Ahmad, S., Gan, S., Salleh, M. N., Ab Ghani, M. H., & Mou'ad, A. T. (2016). Effect of polymer blend matrix compatibility and fibre reinforcement content on thermal stability and flammability of ecocomposites made from waste materials. Thermochimica Acta, 640, 52-61.
  7. Darus, S. A. A. Z. M., Ghazali, M. J., Azhari, C. H., Zulkifli, R., Shamsuri, A. A., Sarac, H., & Mustafa, M. T. (2020). Physicochemical and Thermal Properties of Lignocellulosic Fiber from Gigantochloa Scortechinii Bamboo: Effect of Steam Explosion Treatment. Fibers and Polymers, 21(10), 2186–2194.
  8. Elisabeth, L., Siqueira, V. De, Vaz, B., Benedito, J., & Junior, G. (2018). Soybean waste in particleboard production Aproveitamento de resíduos da soja para a produção de painéis aglomerados. Agricultural Sciences, 42(2), 186–194.
  9. Hadiyanto, Christwardana, M., Sutanto, H., Suzery, M., Amelia, D., & Aritonang, R. F. (2018). Kinetic study on the effects of sugar addition on the thermal degradation of phycocyanin from Spirulina sp. Food Bioscience, 22, 85–90.
  10. Hamidon, M. H., Sultan, M. T. H., Ariffin, A. H., & Shah, A. U. M. (2019). Effects of fibre treatment on mechanical properties of kenaf fibre reinforced composites: A review. Journal of Materials Research and Technology, 8(3), 3327–3337.
  11. Janković, B., Mentus, S., & Janković, M. (2008). A kinetic study of the thermal decomposition process of potassium metabisulfite: Estimation of distributed reactivity model. Journal of Physics and Chemistry of Solids, 69(8), 1923–1933.
  12. Kakati, N., Assanvo, E. F., & Kalita, D. (2019). Alkalinization and graft copolymerization of pineapple leaf fiber cellulose and evaluation of physic‐chemical properties. Polymer Composites, 40(4), 1395-1403.
  13. Kakati, N., Assanvo, E. F., & Kalita, D. (2019). Synthesis and Performance Evaluation of Unsaturated Polyester Blends of Resins and Its Application on Non-woven/Fabric Jute Fibers Reinforced Composites. Journal of Polymers and the Environment, 27(11), 2540–2548.
  14. Keller, A. (2003). Compounding and mechanical properties of biodegradable hemp fibre composites. Composites Science and Technology, 63(9), 1307–1316.
  15. Khachani, M., El Hamidi, A., Halim, M., & Arsalane, S. (2014). Non-isothermal kinetic and thermodynamic studies of the dehydroxylation process of synthetic calcium hydroxide Ca(OH)2. Journal of Materials and Environmental Science, 5(2), 615–624
  16. Khoathane, M. C., Vorster, O. C., & Sadiku, E. R. (2008). Hemp fiber-reinforced 1-pentene/polypropylene copolymer: The effect of fiber loading on the mechanical and thermal characteristics of the composites. Journal of Reinforced Plastics and Composites, 27(14), 1533–1544.
  17. Kuranchie, C., Yaya, A., & Bensah, Y. D. (2021). The effect of natural fibre reinforcement on polyurethane composite foams – A review. Scientific African, 11.
  18. La Mantia, F. P., & Morreale, M. (2011). Green composites: A brief review. Composites Part A: Applied Science and Manufacturing, 42(6), 579–588.
  19. Monteiro, S. N., Calado, V., Rodriguez, R. J. S., & Margem, F. M. (2012). Thermogravimetric stability of polymer composites reinforced with less common lignocellulosic fibers - An overview. Journal of Materials Research and Technology, 1(2), 117–126.
  20. Mugdha Bhat, K., Rajagopalan, J., Mallikarjunaiah, R., Nagaraj Rao, N., & Sharma, A. (2022). Eco-Friendly and Biodegradable Green Composites. IntechOpen.
  21. N’Gatta, K. M. N., Belaid, H., Hayek, J. El, Assanvo, E. F., Kajdan, M., Masquelez, N., Boa, D., Cavaillès, V., Bechelany, M., & Salameh, C. (2022). 3D printing of cellulose nanocrystals based composites to build robust biomimetic scaffolds for bone tissue engineering. Scientific Reports, 1–14.
  22. Nenonene, A. Y., Koba, K., Rigal, L., & Sanda, K. (2014). Development of kenaf’s particleboards agglomerated with produced tannins by some plant organs from togo. Sciences de la vie, de la terre et agronomie, 02(1), 36-40; .
  23. Oza, S., Ning, H., Ferguson, I., & Lu, N. (2014). Effect of surface treatment on thermal stability of the hemp-PLA composites: Correlation of activation energy with thermal degradation. Composites Part B: Engineering, 67, 227–232.
  24. Raju, G. U., & Kumarappa, S. (2012). Experimental study on mechanical and thermal properties of epoxy composites filled with agricultural residue. Polymers from Renewable Resources, 3(3), 117–138.
  25. Rangappa, S. M., Siengchin, S., Parameswaranpillai, J., Jawaid, M., & Ozbakkaloglu, T. (2022). Lignocellulosic fiber reinforced composites: Progress, performance, properties, applications, and future perspectives. Polymer Composites, 43(2), 645-691,
  26. Reis, R. H. M., Nunes, L. F., Oliveira, M. S., De Veiga Junior, V. F., Filho, F. D. C. G., Pinheiro, M. A., Candido, V. S., & Monteiro, S. N. (2020). Guaruman fiber: Another possible reinforcement in composites. Journal of Materials Research and Technology, 9(1), 622–628.
  27. Reis, R. S., Tienne, L. G. P., Souza, D. de H. S., Marques, M. de F. V., & Monteiro, S. N. (2020). Characterization of coffee parchment and innovative steam explosion treatment to obtain microfibrillated cellulose as potential composite reinforcement. Journal of Materials Research and Technology, 9(4), 9412–9421.
  28. MaÂlek, J. (2000). Kinetic analysis of crystallization processes in amorphous materials. Thermochimica Acta, 355(1–2), 239–253.
  29. Rosa, M. F., Chiou, B., Medeiros, E. S., Wood, D. F., Williams, T. G., Mattoso, L. H. C., Orts, W. J., & Imam, S. H. (2009). Bioresource Technology Effect of fiber treatments on tensile and thermal properties of starch / ethylene vinyl alcohol copolymers / coir biocomposites. Bioresource Technology, 100(21), 5196–5202.
  30. Rowe, A. A., Tajvidi, M., & Gardner, D. J. (2016). Thermal stability of cellulose nanomaterials and their composites with polyvinyl alcohol (PVA). Journal of Thermal Analysis and Calorimetry, 126(3), 1371–1386.
  31. Sahin, A., Tasdemir, H. M., Karabulut, A. F., & Gürü, M. (2017). Mechanical and Thermal Properties of Particleboard Manufactured from Waste Peachnut Shell with Glass Powder. Arabian Journal for Science and Engineering, 42(4), 1559–1568.
  32. Scatolino, M. V., Costa, A. de O., Guimarães Júnior, J. B., Protásio, T. de P., Mendes, R. F., & Mendes, L. M. (2017). Eucalyptus wood and coffee parchment for particleboard production: Physical and mechanical properties. Ciência e Agrotecnologia, 41(2), 139–146.
  33. Singh, H., Inder, J., Singh, P., Singh, S., Dhawan, V., & Tiwari, S. K. (2018). A Brief Review of Jute Fibre and Its Composites Harpreet. Materials Today: Proceedings, 5(14), 28427–28437.
  34. Svoboda, R., & Málek, J. (2011). Interpretation of crystallization kinetics results provided by DSC. Thermochimica Acta, 526(1–2), 237–251.
  35. Tajvidi, M., & Takemura, A. (2010). Thermal degradation of natural fiber-reinforced polypropylene composites. Journal of Thermoplastic Composite Materials, 23(3), 281–298.
  36. Thiruchitrambalam, M., Athijayamani, A., Sathiyamurthy, S., & Thaheer, A. S. A. (2010). A review on the natural fiber-reinforced polymer composites for the development of roselle fiber-reinforced polyester composite. Journal of Natural Fibers, 7(4), 307-323. August 2014, 37–41.
  37. Tserki, V., Matzinos, P., Zafeiropoulos, N. E., & Panayiotou, C. (2006). Development of biodegradable composites with treated and compatibilized lignocellulosic fibers. Journal of applied polymer science, 100(6), 4703-4710.
  38. Vyazovkin, S. (2020). Kissinger Method in Kinetics of Materials: Things to Beware and Be Aware of. Molecules, 25(12).
  39. Vyazovkin, S., Burnham, A. K., Criado, J. M., Pérez-Maqueda, L. A., Popu, C., & Sbirrazzuoli, N. (2011). ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochimica Acta, 520(1–2), 1–19.
  40. Yakout, M., & Elbestawi, M. A. (2017). Additive Manufacturing of Composite Materials : An Overview. 6th International Conference on Virtual Machining Process Technology (VMPT), Montréal, May, 1–8.
  41. Zafeiropoulos, N. E., Baillie, C. A., & Hodgkinson, J. M. (2002). Engineering and characterisation of the interface in flax fibre/polypropylene composite materials. Part II. The effect of surface treatments on the interface. Composites Part A: Applied Science and Manufacturing, 33(9), 1185–1190.

Last update:

  1. Effects of carbon nanotubes and carbon fibers on the properties of ultra-high performance concrete for offshore wind power generation

    Jing Chen. International Journal of Renewable Energy Development, 13 (4), 2024. doi: 10.61435/ijred.2024.60135

Last update: 2024-05-22 05:24:23

No citation recorded.