skip to main content

Screen printed carbon electrode from coconut shell char for lead ions detection

1Research Group of Solid-State Chemistry and Catalysis, Chemistry Department, Sebelas Maret University, Indonesia

2Chemistry Department, Faculty of Mathematics and Natural Sciences, Sebelas Maret University, Indonesia

3Research Group of Sustainable Thermofluids, Mechanical Engineering, Sebelas Maret University, Indonesia

Received: 25 Aug 2023; Revised: 5 Nov 2023; Accepted: 10 Nov 2023; Available online: 20 Nov 2023; Published: 1 Jan 2024.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This research aimed to produce a screen-printed carbon electrode (SPCE) from an activated coconut shell carbon. As a raw material, coconut shell char provides renewability and is abundantly available in the market. Meanwhile, SPCE offers a simple electroanalytical electrode because the working, counter, and reference electrodes are in one piece. The coconut shell carbon was activated by steam at 700 oC for 1h, producing AC700 that was then characterized to ensure the result by following per under carbon as the main component, the phases, crystal structure, surface area, morphology, and elemental content. The result showed that the surface area of AC700 is 816 m2/g, and the surface structure is porous, as identified by SEM images. Impedance analysis followed by data fitting and conductivity calculation found a high conductivity of 8.68 x 10-2 Scm‑1. The produced-SPCE or SPAC700 was modified by ferrocene at various compositions of 10%; 20%; and 30% of mass. The SPAC700-Fc30 provided the best performance for lead analysis with a detection limit of 0.35 mM, a quantitation limit of 1.17 mM, and good reproducibility with a Repeatability Coefficient (RC) of 0.022. SPAC700-Fc30 showed good lead ions detection despite under 10% Cu2+ and 10% Co2+ interferences. The result confirmed the potential use of coconut shell char as the raw material for SPCE production.

Fulltext View|Download
Keywords: Coconut Shell; Activated Carbon; SPCE; Ferrocene; lead - ions analysis

Article Metrics:

  1. Ahammad, A. J. S., Pal, P. R., Shah, S. S., Islam, T., Mahedi Hasan, M., Qasem, M. A. A., Odhikari, N., Sarker, S., Kim, D. M., & Abdul Aziz, M. (2019). Activated jute carbon paste screen-printed FTO electrodes for nonenzymatic amperometric determination of nitrite. Journal of Electroanalytical Chemistry, 832(November 2018), 368–379. https://doi.org/10.1016/j.jelechem.2018.11.034
  2. Amatatongchai, M., Sitanurak, J., Sroysee, W., Sodanat, S., Chairam, S., Jarujamrus, P., Nacapricha, D., & Lieberzeit, P. A. (2019). Highly sensitive and selective electrochemical paper-based device using a graphite screen-printed electrode modified with molecularly imprinted polymers coated Fe3O4@Au@SiO2 for serotonin determination. Analytica Chimica Acta, 1077, 255–265. https://doi.org/10.1016/j.aca.2019.05.047
  3. Ambaye, A. D., Kefeni, K. K., Kebede, T. G., Ntsendwana, B., Mishra, S. B., & Nxumalo, E. N. (2022). Cu-MOF/N-doped GO nanocomposites modified screen-printed carbon electrode towards detection of 4-nitrophenol. Journal of Electroanalytical Chemistry, 919(February), 116542. https://doi.org/10.1016/j.jelechem.2022.116542
  4. Antherjanam, S., & Saraswathyamma, B. (2022). Simultaneous electrochemical determination of hydrazine and hydroxylamine on a thiadiazole derivative modified pencil graphite electrode. Materials Chemistry and Physics, 275(July 2021), 125223. https://doi.org/10.1016/j.matchemphys.2021.125223
  5. Bakti, A. I., Gareso, P. L., & Rauf, N. (2018). Characterization of Active Carbon from Coconut Shell using X-Ray Diffraction (X-RD) and SEM-EDX Techniques. Jurnal Penelitian Fisika Dan Aplikasinya (JPFA), 8(2), 115. https://doi.org/10.26740/jpfa.v8n2.p115-122
  6. Beitollahi, H., Khalilzadeh, M. A., Tajik, S., Safaei, M., Zhang, K., Jang, H. W., & Shokouhimehr, M. (2020). Recent Advances in Applications of Voltammetric Sensors Modified with Ferrocene and Its Derivatives. ACS Omega, 5(5), 2049–2059. https://doi.org/10.1021/acsomega.9b03788
  7. Bhavik A. Patel. (2020). Electrochemistry for Bioanalysis (K. Eryilmaz (ed.)). Elsevier Inc
  8. Chairunnisa, Miksik, F., Miyazaki, T., Thu, K., Miyawaki, J., Nakabayashi, K., Wijayanta, A. T., & Rahmawati, F. (2021). Development of biomass based-activated carbon for adsorption dehumidification. Energy Reports, 7, 5871–5884. https://doi.org/10.1016/j.egyr.2021.09.003
  9. Chen, B., Xie, Q., Zhang, S., Lin, L., Zhang, Y., Zhang, L., Jiang, Y., & Zhao, M. (2021). A novel electrochemical molecularly imprinted senor based on CuCo2O4@ biomass derived carbon for sensitive detection of tryptophan. Journal of Electroanalytical Chemistry, 901(May), 115680. https://doi.org/10.1016/j.jelechem.2021.115680
  10. Cinti, S., Fiore, L., Massoud, R., Cortese, C., Moscone, D., Palleschi, G., & Arduini, F. (2018). Low-cost and reagent-free paper-based device to detect chloride ions in serum and sweat. Talanta, 179(July 2017), 186–192. https://doi.org/10.1016/j.talanta.2017.10.030
  11. Colozza, N., Kehe, K., Dionisi, G., Popp, T., Tsoutsoulopoulos, A., Steinritz, D., Moscone, D., & Arduini, F. (2019). A wearable origami-like paper-based electrochemical biosensor for sulfur mustard detection. Biosensors and Bioelectronics, 129(December 2018), 15–23. https://doi.org/10.1016/j.bios.2019.01.002
  12. Danish, M., Akhtar, M. N., Hashim, R., Saleh, J. M., & Bakar, E. A. (2020). Analysis using image segmentation for the elemental composition of activated carbon. MethodsX, 7, 1–9. https://doi.org/10.1016/j.mex.2020.100983
  13. Das, D., Samal, D. P., & BC, M. (2015). Preparation of Activated Carbon from Green Coconut Shell and its Characterization. Journal of Chemical Engineering & Process Technology, 06(05). https://doi.org/10.4172/2157-7048.1000248
  14. El Hamdouni, Y., El Hajjaji, S., Szabó, T., Trif, L., Felhősi, I., Abbi, K., Labjar, N., Harmouche, L., & Shaban, A. (2022). Biomass valorization of walnut shell into biochar as a resource for electrochemical simultaneous detection of heavy metal ions in water and soil samples: Preparation, characterization, and applications. Arabian Journal of Chemistry, 15(11). https://doi.org/10.1016/j.arabjc.2022.104252
  15. Emambakhsh, F., Asadollahzadeh, H., Rastakhiz, N., & Mohammadi, S. Z. (2022). Highly sensitive determination of Bisphenol A in water and milk samples by using magnetic activated carbon – Cobalt nanocomposite-screen printed electrode. Microchemical Journal, 179(August 2021), 107466. https://doi.org/10.1016/j.microc.2022.107466
  16. Gustian, I., Angasa, E., Agustini, D., Maryanti, E., & Fitriani, D. (2015). Preparation of Fe-intercalated Graphite Based on Coal Tailings, Dimensional Structure. Aceh International Journal of Science and Technology, 4(3), 88–92. https://doi.org/10.13170/aijst.4.3.3017
  17. Hakim, L., & Sedyadi, E. (2020). Synthesis and Characterization of Fe3O4 Composites Embeded on Coconut Shell Activated Carbon. JKPK (Jurnal Kimia Dan Pendidikan Kimia), 5(3), 245. https://doi.org/10.20961/jkpk.v5i3.46543
  18. Hassan, U. F., Sallau, A. A., Ekanem, E. O., Jauro, A., & Kolo, A. M. (2021). Effect of carbonization temperature on properties of char from coconut shell. Industrial Crops and Products 9(1), 34–39. https://doi.org/10.1016/j.indcrop.2008.02.012
  19. Herawati, Buchari, B., & Noviandri, I. (2017). Characterization of Reference Electrode Ag / Agcl. Conference Paper : 3rd International Seminar on Education Technology 2017, 3(1 mm), 22–26
  20. Hernández-Gordillo, M. J., Alvarez-Serna, B. E., & Ramírez-Chavarría, R. G. (2023). Unmodified Screen-Printed Electrodes-Based Sensor for Electrochemical Detection of Bisphenol A. IFMBE Proceedings, 86(October), 603–610. https://doi.org/10.1007/978-3-031-18256-3_63
  21. Hidayat, A., & Sutrisno, B. (2016). Comparison on pore development of activated carbon produced by chemical and physical activation from palm empty fruit bunch. IOP Conference Series: Materials Science and Engineering, 162(1). https://doi.org/10.1088/1757-899X/162/1/012008
  22. Huang, L., Wang, S., Zhang, Y., Huang, X. H., Peng, J. J., & Yang, F. (2021). Preparation of a N-P co-doped waste cotton fabric-based activated carbon for supercapacitor electrodes. Xinxing Tan Cailiao/New Carbon Materials, 36(6), 1128–1137. https://doi.org/10.1016/S1872-5805(21)60054-9
  23. Imani, S., Alizadeh, A., Roudgar-Amoli, M., & Shariatinia, Z. (2022). Bi-layered photoelectrodes of TiO2/activated carbon modified with SrTiO3 films boosted sunlight harvesting of dye-sensitized solar cells. Inorganic Chemistry Communications, 145(August), 110045. https://doi.org/10.1016/j.inoche.2022.110045
  24. Jagirani, M. S., Balouch, A., Mahesar, S. A., Alveroğlu, E., Kumar, A., Tunio, A., & Abdullah. (2022). Selective and sensitive detoxification of toxic lead ions from drinking water using lead (II) ion-imprinted interpenetrating polymer linkage. Polymer Bulletin, 79(3), 1887–1909. https://doi.org/10.1007/s00289-021-03546-8
  25. Khuong, D. A., Nguyen, H. N., & Tsubota, T. (2021). Activated carbon produced from bamboo and solid residue by CO2 activation utilized as CO2 adsorbents. Biomass and Bioenergy, 148(February), 106039. https://doi.org/10.1016/j.biombioe.2021.106039
  26. Kuan-Ching Lee, Mitchell Shyan Wei Lim, Zhong-Yun Hong, S. C. G.-T. P. and C.-M. H. (2021). Coconut Shell-Derived Activated Carbon for High-Performance. Energies, 14(15), 4546
  27. Kumar, A., Kumar, A., & Anwesha. (2023). Effect of substrate on interfacial electronic properties of ferrocene thin films. Materials Today: Proceedings, 80, 544–548. https://doi.org/10.1016/j.matpr.2022.11.044
  28. Lazim, Z. M., & Hadibarata, T. (2015). Adsorption Characteristics of Bisphenol A onto Low-Cost Modified Phyto- Waste Material in Aqueous Solution Adsorption Characteristics of Bisphenol A onto Low-Cost Modified Phyto-Waste Material in Aqueous Solution. May 2020. https://doi.org/10.1007/s11270-015-2318-5
  29. Lewandowski, A., Waligora, L., & Galinski, M. (2009). Ferrocene as a reference redox couple for aprotic ionic liquids. Electroanalysis, 21(20), 2221–2227. https://doi.org/10.1002/elan.200904669
  30. Lian, X., Li, Q., Zhao, Y., Liu, S., Liu, H., & Zhang, H. (2018). The electrochemical properties of porous carbon derived from the prawn as anode for lithium ion batteries. International Journal of Electrochemical Science, 13(3), 2474–2482. https://doi.org/10.20964/2018.03.33
  31. Liu, Y., Chang, C., Xue, Q., Wang, R., Chen, L., Liu, Z., & He, L. (2022). Highly efficient detection of Pb(II) ion in water by polypyrrole and metal-organic frame modify glassy carbon electrode. Diamond and Related Materials, 130(October), 109477. https://doi.org/10.1016/j.diamond.2022.109477
  32. Liu, Z., Wang, R., Xue, Q., Chang, C., Liu, Y., & He, L. (2023). Highly efficient detection of Cd(Ⅱ) ions in water by graphitic carbon nitride and tin dioxide nanoparticles modified glassy carbon electrode. Inorganic Chemistry Communications, 148(November 2022), 110321. https://doi.org/10.1016/j.inoche.2022.110321
  33. Mao, D., Duan, P., & Piao, Y. (2022). Acid phosphate-activated glassy carbon electrode for simultaneous detection of cadmium and lead. Journal of Electroanalytical Chemistry, 925(October), 116898. https://doi.org/10.1016/j.jelechem.2022.116898
  34. Martínez, R. R. G., González, C. A. R., Hernández-Paz, J. F., Vega, F. J., Montes, H. C., & Armendáriz, I. O. (2021). Synthesis and characterization of carbon aerogels electrodes modified by ag2s nanoparticles. Materials Research, 24(3), 3–8. https://doi.org/10.1590/1980-5373-MR-2020-0387
  35. Millazo, G., Caroli, S., & Sharma, V. K. (1978). Standard Reduction Potentials by Element. In Tables of Standard Electrode Potentials (pp. 1–15). Wiley, London
  36. Mopoung, S., & Dejang, N. (2021). Activated carbon preparation from eucalyptus wood chips using continuous carbonization-steam activation process in a batch intermittent rotary kiln. Scientific Reports |, 11(1), 13948. https://doi.org/10.1038/s41598-021-93249-x
  37. Mopoung, S., Sitthikhankaew, R., & Mingmoon, N. (2021). Preparation of anode material for lithium battery from activated carbon. International Journal of Renewable Energy Development, 10(1), 91–96. https://doi.org/10.14710/ijred.2021.32997
  38. Ndiaye, A. L., Delile, S., Brunet, J., Varenne, C., & Pauly, A. (2016). Electrochemical sensors based on screen-printed electrodes: The use of phthalocyanine derivatives for application in VFA Detection. Biosensors, 6(3). https://doi.org/10.3390/bios6030046
  39. Nguyen, H., Sung, Y., O’Shaughnessy, K., Shan, X., & Shih, W.-C. (2018). Smartphone Nanocolorimetry for On-Demand Lead Detection and Quantitation in Drinking Water. Analytical Chemistry, 90(19), 11517–11522. https://doi.org/10.1021/acs.analchem.8b02808
  40. Nguyen, L. H., Nguyen, T. M. P., Van, H. T., Vu, X. H., Ha, T. L. A., Nguyen, T. H. V., Nguyen, X. H., & Nguyen, X. C. (2019). Treatment of Hexavalent Chromium Contaminated Wastewater Using Activated Carbon Derived from Coconut Shell Loaded by Silver Nanoparticles: Batch Experiment. Water, Air, and Soil Pollution, 230(3). https://doi.org/10.1007/s11270-019-4119-8
  41. Nicholls, R. (2023). Statistics in R: Repeatability Coefficient. [WWW Document]
  42. Nita, C., Zhang, B., Dentzer, J., & Matei Ghimbeu, C. (2021). Hard carbon derived from coconut shells, walnut shells, and corn silk biomass waste exhibiting high capacity for Na-ion batteries. Journal of Energy Chemistry, 58, 207–218. https://doi.org/10.1016/j.jechem.2020.08.065
  43. Parat, C., Ricard, E., Mefteh, W. Ben, & Hécho, I. Le. (2023). Carbon screen-printed electrodes modified by a polycatechol film for Cu and Pb detection in acidified drinking water. Electrochimica Acta, 461(December 2022). https://doi.org/10.1016/j.electacta.2023.142666
  44. Prakash, V., Sun, Z., Sietsma, J., & Yang, Y. (2014). Electrochemical Recovery of Rare Earth Elements from Magnet Scraps- A Theoretical Analysis. ERES2014: 1st European Rare Earth Resources Conference|Milos|04‐07/09/2014, 163–170. https://www.researchgate.net/publication/322937071_Electrochemical_recovery_of_Rare_Earth_Elements_from_Magnet_scrap-_A_theoretical_analysis/link/5a78797aaca2722e4df30330/download
  45. Rahmawati, F., Heliani, K. R., Wijayanta, A. T., Zainul, R., Wijaya, K., Miyazaki, T., & Miyawaki, J. (2023). Alkaline leaching-carbon from sugarcane solid waste for screen-printed carbon electrode. Chemical Papers. https://doi.org/10.1007/s11696-023-02712-8
  46. Rahmawati, F., Ridassepri, A. F., Chairunnisa, Wijayanta, A. T., Nakabayashi, K., Miyawaki, J., & Miyazaki, T. (2021). Carbon from bagasse activated with water vapor and its adsorption performance for methylene blue. Applied Sciences (Switzerland), 11(2), 1–16. https://doi.org/10.3390/app11020678
  47. Rampe, M. J., Santoso, I. R. S., Rampe, H. L., Tiwow, V. A., & Apita, A. (2021). Infrared Spectra Patterns of Coconut Shell Charcoal as Result of Pyrolysis and Acid Activation Origin of Sulawesi, Indonesia. E3S Web Conf. 328, 08008, https://doi.org/10.1051/e3sconf/202132808008
  48. Rampe, M. J., Setiaji, B., Trisunaryanti, W., & Triyono, T. (2011). Fabrication and Characterization of Carbon Composite From Coconut Shell Carbon. Indonesian Journal of Chemistry, 11(2), 124–130. https://doi.org/10.22146/ijc.21398
  49. Ren, S., Zeng, J., Zheng, Z., & Shi, H. (2021). Perspective and application of modified electrode material technology in electrochemical voltammetric sensors for analysis and detection of illicit drugs. Sensors and Actuators, A: Physical, 329, 112821. https://doi.org/10.1016/j.sna.2021.112821
  50. Rezma, S., Birot, M., Hafiane, A., & Deleuze, H. (2017). Physically activated microporous carbon from a new biomass source: Date palm petioles. Comptes Rendus Chimie, 20(9–10), 881–887. https://doi.org/10.1016/j.crci.2017.05.003
  51. Ridassepri, A. F., Rahmawati, F., Heliani, K. R., Miyawaki, J., & Wijayanta, A. T. (2020). Activated Carbon from Bagasse and its Application for Water Vapor Adsorption. Evergreen Joint Journal of Novel Carbon Resource & Green Asia Strategy, 07(03), 409–416. https://doi.org/10.5109/4068621
  52. Rizal, W. A., Nisa, K., Maryana, R., Prasetyo, D. J., Pratiwi, D., Jatmiko, T. H., Ariani, D., & Suwanto, A. (2020). Chemical composition of liquid smoke from coconut shell waste produced by SME in Rongkop Gunungkidul. IOP Conference Series: Earth and Environmental Science, 462(1). https://doi.org/10.1088/1755-1315/462/1/012057
  53. Safaei, M., Beitollahi, H., & Shishehbore, M. R. (2019). Modified screen printed electrode for selective determination of folic acid. Acta Chimica Slovenica, 66(4), 777–783. https://doi.org/10.17344/acsi.2018.4629
  54. Shrestha, L., Thapa, M., Shrestha, R., Maji, S., Pradhananga, R., & Ariga, K. (2019). Rice Husk-Derived High Surface Area Nanoporous Carbon Materials with Excellent Iodine and Methylene Blue Adsorption Properties. C, 5(1), 10. https://doi.org/10.3390/c5010010
  55. Siddiqui, M. F., Khan, S. A., Hussain, D., Tabrez, U., Ahamad, I., Fatma, T., & Khan, T. A. (2022). A sugarcane bagasse carbon-based composite material to decolor and reduce bacterial loads in waste water from textile industry. Industrial Crops and Products, 176(November 2021), 114301. https://doi.org/10.1016/j.indcrop.2021.114301
  56. Su, S. fen, Ye, L. meng, Tian, Q. mei, Situ, W. bei, Song, X. liang, & Ye, S. ying. (2020). Photoelectrocatalytic inactivation of Penicillium expansum spores on a Pt decorated TiO2/activated carbon fiber photoelectrode in an all-solid-state photoelectrochemical cell. Applied Surface Science, 515(February), 145964. https://doi.org/10.1016/j.apsusc.2020.145964
  57. Sujiono, E. H., Zabrian, D., Zurnansyah, Mulyati, Zharvan, V., Samnur, & Humairah, N. A. (2022). Fabrication and characterization of coconut shell activated carbon using variation chemical activation for wastewater treatment application. Results in Chemistry, 4, 100291. https://doi.org/10.1016/j.rechem.2022.100291
  58. Tu, W., Liu, Y., Xie, Z., Chen, M., Ma, L., Du, G., & Zhu, M. (2021). A novel activation-hydrochar via hydrothermal carbonization and KOH activation of sewage sludge and coconut shell for biomass wastes: Preparation, characterization and adsorption properties. Journal of Colloid and Interface Science, 593, 390–407. https://doi.org/10.1016/j.jcis.2021.02.133
  59. Urbanowicz, M., Sadowska, K., Lemieszek, B., Paziewska-Nowak, A., Sołdatowska, A., Dawgul, M., & Pijanowska, D. G. (2023). Effect of dendrimer-based interlayers for enzyme immobilization on a model electrochemical sensing system for glutamate. Bioelectrochemistry, 152(March). https://doi.org/10.1016/j.bioelechem.2023.108407
  60. Vaz, S., Falkmer, T., Passmore, A. E., Parsons, R., & Andreou, P. (2013). The Case for Using the Repeatability Coefficient When Calculating Test-Retest Reliability. PLoS ONE, 8(9), 1–7. https://doi.org/10.1371/journal.pone.0073990
  61. Wahyuni, W. T., Putra, B. R., Heryanto, R., Rohaeti, E., Yanto, D. H. Y., & Fauzi, A. (2021). A Simple Approach to Fabricate a Screen-Printed Electrode and Its Application for Uric Acid Detection. International Journal of Electrochemical Science, 16(2), 1–14. https://doi.org/10.20964/2021.02.36
  62. Wang, Q., Zhao, H. H., Chen, J. W., Gu, K. D., Zhang, Y. Z., Zhu, Y. X., Zhou, Y. K., & Ye, L. X. (2009). Adverse health effects of lead exposure on children and exploration to internal lead indicator. Science of The Total Environment, 407(23), 5986–5992. https://doi.org/10.1016/j.scitotenv.2009.08.038
  63. Wang, X., Li, D., Yang, B., & Li, W. (2013). Textural characteristics of coconut shell-based activated carbons with steam activation. Advanced Materials Research, 608–609, 366–373. https://doi.org/10.4028/www.scientific.net/AMR.608-609.366
  64. Widanarto, W., Budianti, S. I., Ghoshal, S. K., Kurniawan, C., Handoko, E., & Alaydrus, M. (2022). Improved microwave absorption traits of coconut shells-derived activated carbon. Diamond and Related Materials, 126(November 2021), 109059. https://doi.org/10.1016/j.diamond.2022.109059
  65. Widyaningrum, B. A., Widianti, N., Harsini, M., & Purwaningsih, A. (2020). Selective voltammetric detection of dopamine using ferrocene modified carbon paste electrode. IOP Conference Series: Earth and Environmental Science, 572(1). https://doi.org/10.1088/1755-1315/572/1/012037
  66. Wu, Q., Yan, X., Jia, Y., & Yao, X. (2021). Defective carbon-based materials: controllable synthesis and electrochemical applications. EnergyChem, 3(5), 100059. https://doi.org/10.1016/j.enchem.2021.100059
  67. Yang, Q., Yang, C., Yi, J., Fan, G., Yang, H., & Ge, Z. (2020). A Sensitive Carbon Paste Electrode for Selective Detection of Lead Based on the Synergistic Effect of Bismuth and Chelating Agent. ECS Journal of Solid State Science and Technology, 9(10), 101012. https://doi.org/10.1149/2162-8777/abb8ba
  68. Yuan, K., Yousefalizadeh, G., Saraci, F., Peng, T., Kozin, I., Stamplecoskie, K. G., & Wang, S. (2018). Impact of Ferrocene Substitution on the Electronic Properties of BODIPY Derivatives and Analogues. Inorganic Chemistry, 57(23), 14698–14704. https://doi.org/10.1021/acs.inorgchem.8b02476
  69. Zhang, H., Li, Y., Zhang, Y., Wu, J., Li, S., & Li, L. (2023). A Disposable Electrochemical Sensor for Lead Ion Detection Based on In Situ Polymerization of Conductive Polypyrrole Coating. Journal of Electronic Materials, 52(3), 1819–1828. https://doi.org/10.1007/s11664-022-10175-y
  70. Zhou, J., Luo, A., & Zhao, Y. (2018). Preparation and characterisation of activated carbon from waste tea by physical activation using steam. Journal of the Air and Waste Management Association, 68(12), 1269–1277. https://doi.org/10.1080/10962247.2018.1460282

Last update:

No citation recorded.

Last update: 2024-04-30 15:32:29

No citation recorded.