skip to main content

Site suitability analysis of wind energy resources in different regions of Algeria’s southwestern highland

Laboratory of Renewable Energies and Electrical Systems, Department of Electrical Engineering, Faculty of Science and Technology, Mostaganem University, Mostaganem 27000, Algeria

Received: 15 Jul 2023; Revised: 1 Nov 2023; Accepted: 11 Nov 2023; Available online: 22 Nov 2023; Published: 1 Jan 2024.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

This paper presents a site suitability analysis for a 20 MW wind farm project in western Algeria’s highlands. The aim is to improve the quality of the electricity grid’s service and increase Algeria’s renewable energy utilization. The wind potential of three regions, Mecheria, El Kheiter, and Naâma, was evaluated using the Weibull function and the wind atlas analysis and application program (WAsP) with a ten-year database (2011-2021) at 10 m hub height. The assessment encompassed a comprehensive analysis of various wind resource parameters, including mean wind speed, prevailing direction, and power densities. In comparison to other sites, the Mecheria region has the best wind potential, with a mean annual wind speed of 6.31 m/s, a power density of 283 W/m2, and Weibull parameters A = 7.1 m/s and k = 2.02. These promising results prompted us to design a wind farm in this region using Power Wind 90/2000 kW turbine technology facing the predominant wind directions of the site, producing 103.91 GWh of total annual gross energy produced (gross AEP) and 103.75 GWh of total annual net energy produced (net AEP). Finally, it appears that the wind resources in the selected region are well-suited for electricity generation, offering a promising opportunity to reduce the country's dependence on fossil fuels.

Fulltext View|Download
Keywords: Wind energy ; Wind potential; Weibull distribution; Cost of energy (COE); Greenhouse gas emission (GHG).

Article Metrics:

  1. Abdeladim, K., Romeo, R., & Magrì, S. (1996). Wind mapping of a region in the north-east of Algeria. Renewable Energy, 9(1–4), 789–793. https://doi.org/10.1016/0960-1481(96)88401-1
  2. Abdel-Rahman, M. A., Abdel-Hamid, R. H., Adma, M. D. H., & Daowd, M. a. a. H. (2022). Techno-economic analysis to develop the first wind farm in the Egyptian western desert at Elkharga Oasis. Clean Energy, 6(1), 211–225. https://doi.org/10.1093/ce/zkac006
  3. Abdeslame, D., Merzouk, N. K., Mekhtoub, S., Abbas, M., & Dehmas, M. (2017). Estimation of power generation capacities of a wind farms installed in windy sites in Algerian high plateaus. Renewable Energy, 103, 630–640. https://doi.org/10.1016/j.renene.2016.10.07
  4. Akdag, S., & Dinler, A. (2009). A new method to estimate Weibull parameters for wind energy applications. Energy Conversion and Management, 50(7), 1761–1766. https://doi.org/10.1016/j.enconman.2009.03.020
  5. Al-Ghriybah, N. M. (2022). Assessment of Wind Energy Potentiality at Ajloun, Jordan Using Weibull Distribution Function. Evergreen, 9(1), 10–16. https://doi.org/10.5109/4774211
  6. Asadi, M., & Pourhossein, K. (2021). Wind farm site selection considering turbulence intensity. Energy, 236, 121480. https://doi.org/10.1016/j.energy.2021.121480
  7. Belabes, B., Youcefi, A., Guerri, O., Djamai, M., & Kaabeche, A. (2015). Evaluation of wind energy potential and estimation of cost using wind energy turbines for electricity generation in north of Algeria. In Renewable and Sustainable Energy Reviews, 51, 1245–1255). Elsevier Ltd. https://doi.org/10.1016/j.rser.2015.07.043
  8. Bensaid, H. “The Algerian programme on wind energy.” Proceeding of WEAC (1985): 21-27
  9. Boudia, S. M., & Guerri, O. (2015). Investigation of wind power potential at Oran, northwest of Algeria. Energy Conversion and Management, 105, 81–92. https://doi.org/10.1016/j.enconman.2015.07.055
  10. Boudia, S. M., Benmansour, A., Ghellai, N., Benmdjahed, M., & Hellal, T. (2012). Temporal assessment of wind energy resource in Algerian highlands regions. Rеvuе Des Energies Renouvelables, 15(1),4355. https://www.cder.dz/vlib/revue/pdf/v015_n1_texte_4.pdf
  11. Calif, R., & Schmitt, F. G. (2012). Modeling of atmospheric wind speed sequence using a lognormal continuous stochastic equation. Journal of Wind Engineering and Industrial Aerodynamics, 109, 1-8. https://doi.org/10.1016/j.jweia.2012.06.002
  12. Carrillo, C., Montaño, A. O., Cidras, J., & Diaz-Dorado, E. (2013). Review of power curve modelling for wind turbines. Renewable & Sustainable Energy Reviews, 21, 572–581. https://doi.org/10.1016/j.rser.2013.01.012
  13. Carta, J. A., Ramírez, P., & Velázquez, S. (2009). A review of wind speed probability distributions used in wind energy analysis. case studies in the Canary Islands Renewable & Sustainable Energy Reviews, 13(5) ,933 955. https://doi.org/10.1016/j.rser.2008.05.005
  14. Carta, J. A., Velázquez, S. V., & Cabrera, P. R. (2013). A review of measure-correlate-predict (MCP) methods used to estimate long-term wind characteristics at a target site. Renewable & Sustainable Energy Reviews, 27, 362–400. https://doi.org/10.1016/j.rser.2013.07.004
  15. Cetinay, H., Kuipers, F. A., & Guven, A. N. (2017). Optimal siting and sizing of wind farms. Renewable Energy, 101, 51–58. https://doi.org/10.1016/j.renene.2016.08.008
  16. Chabani, A., Makhloufi, S., & Lachtar, S. (2018). Overview and impact of the renewable energy plants connected to the electrical network in southwest Algeria. EAI Endorsed Transactions on Energy Web. https://doi.org/10.4108/eai.29-3-2021.169168
  17. Dayal, K. K., Cater, J., Kingan, M. J., Bellon, G., & Sharma, R. N. (2021). Wind resource assessment and energy potential of selected locations in Fiji. Renewable Energy, 172, 219–237 https://doi.org/10.1016/j.renene.2021.03.034
  18. De Araujo Lima, L., & Ferreira, C. (2012). Wind resource evaluation in São João do Cariri (SJC) – Paraiba, Brazil. Renewable & Sustainable Energy Reviews, 16(1), 474–480. https://doi.org/10.1016/j.rser.2011.08.011
  19. Diaf, S., & Notton, G. (2013). Technical and economic analysis of large-scale wind energy conversion systems in Algeria. Renewable & Sustainable Energy Reviews, 19, 37–51. https://doi.org/10.1016/j.rser.2012.11.02
  20. Holmes, J. (2001). Wind loading of structures. In CRC Press eBooks. https://doi.org/10.4324/9780203301647
  21. Janie.C “Evaluation of wind speed modeling and forecasting leading to the estimation of the annual energy production of a wind turbine”, University of Montreal, (2015). http://hdl.handle.net/1866/12015
  22. Jourdier, B. (2015). Wind resource in metropolitan France: methods for assessing potential, variability, and trends. Doctoral dissertation. Polytechnic graduate school. https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=48072202
  23. Justus, C., Hargraves, W. R., Mikhail, A., & Graber, D. (1978). Methods for Estimating Wind Speed Frequency Distributions. Journal of Applied Meteorology, 17(3), 350–353. https://doi.org/10.1175/1520-0450(1978)017
  24. Ko, D. H., Jeong, S., & Kim, Y. C. (2015). Assessment of wind energy for small-scale wind power in Chuuk State, Micronesia. Renewable & Sustainable Energy Reviews, 52, 613–622. https://doi.org/10.1016/j.rser.2015.07.16
  25. Liu, X., Tan, Q., Niu, Y., & Babaei, R. (2022). Techno-economic analysis of solar tracker-based hybrid energy systems in a rural residential building: A case study in South Africa. International Journal of Green Energy, 20(2), 192–211. https://doi.org/10.1080/15435075.2021.2024545
  26. Louassa, S., Guerri, O., Merzouk, N. K., & Merzouk, M. (2017). Wind resources estimation and performance evaluation of two wind farms in an Algerian arid zone. Proceedings of 2016 International Renewable and Sustainable Energy Conference, IRSEC 2016, 444–449. https://doi.org/10.1109/IRSEC.2016.7983943
  27. Lo Brano, V., Orioli, A., Ciulla, G., & Culotta, S. (2011). Quality of wind speed fitting distributions for the urban area of Palermo, Italy. Renewable Energy, 36(3), 1026–1039. https://doi.org/10.1016/j.renene.2010.09.009
  28. Manwell, McCowan, & Rogers, E. (2006a). Book review: Wind Energy Explained: Theory, Design and Application. Wind Engineering. 30(2). https://doi.org/10.1260/030952406778055054
  29. Marih, S., Ghomri, L., & Bekkouche, B. (2020). Evaluation of the Wind Potential and Optimal Design of a Wind Farm in The Arzew Industrial Zone in Western Algeria. International Journal of Renewable Energy Development, 9(2), 177–187. https://doi.org/10.14710/ijred.9.2.177-187
  30. Merzouk, N. K. (2000). Wind energy potential of Algeria. Renewable Energy, 21(3–4), 553–562. https://doi.org/10.1016/s0960-1481(00)00090-2
  31. Merzouk, N. K., & Merzouk, M. (2012). Efficiency of three wind turbines installed on high plains region of Algeria. Procedia Engineering, 33,450–457. https://doi.org/10.1016/j.proeng.2012.01.1224
  32. Meziane, F., Chellali, F., Mohammedi, K., Nouicer, I., & Kabouche, N. (2021). Wind flow simulation and characteristics prediction using WAsP software for energy planning over the region of Hassi R’mel. International Journal of Green Energy, 18(6), 634–644. https://doi.org/10.1080/15435075.2021.1875470
  33. Nedjari, H. D., Haddouche, S., Balehouane, A., & Guerri, O. (2017). Optimal windy sites in Algeria: Potential and perspectives. Energy, 147, 1240–1255. https://doi.org/10.1016/j.energy.2017.12.046
  34. Petersen, E. L., Mortensen, N. A., Landberg, L., Højstrup, J., & Frank, H. (1998). Wind power meteorology. Part I: climate and turbulence. Wind Energy, 1(1), 2–22. https://doi.org/10.1002/(sici)1099-1824(199809)1:1
  35. Pishgar-Komleh, S. H., Keyhani, A., & Sefeedpari, P. (2015). Wind speed and power density analysis based on Weibull and Rayleigh distributions (a case study: Firouzkooh county of Iran). Renewable & Sustainable Energy Reviews, 42, 313–322. https://doi.org/10.1016/j.rser.2014.10.028
  36. Pryor, S. C., Nielsen, M., Barthelmie, R. J., & Mann, J. J. (2004). Can Satellite Sampling of Offshore Wind Speeds Realistically Represent Wind Speed Distributions? Part II: Quantifying Uncertainties Associated with Distribution Fitting Methods. Journal of Applied Meteorology, 43(5), 739–750. https://doi.org/10.1175/2096.1
  37. Said, I. A. (1984). Energy in the Arab world. Energy. https://doi.org/10.1016/0360-5442(84)90109-9
  38. Schmid, F., Schmidli, J., Hervo, M., & Haefele, A. (2020). Diurnal Valley winds in a deep alpine valley: Observations. Atmosphere, 11(1), 54. https://doi.org/10.3390/atmos11010054
  39. Serban, A., Paraschiv, L. S., & Paraschiv, S. (2020). Assessment of wind energy potential based on Weibull and Rayleigh distribution models. Energy Reports, 6, 250–267. https://doi.org/10.1016/j.egyr.2020.08.048
  40. Solarin, S. A., & Bello, M. O. (2021). Wind energy and sustainable electricity generation: evidence from Germany. Environment, Development and Sustainability, 24(7): 9185–9198. https://doi.org/10.1007/s10668-021-01818-x
  41. Soukissian, T. H. (2013). Use of multi-parameter distributions for offshore wind speed modeling: The Johnson SB distribution. Applied Energy, 111, 982–1000. https://doi.org/10.1016/j.apenergy.2013.06.050
  42. Stambouli, A. B., Khiat, Z., Flazi, S., & Kitamura, Y. (2012). A review on the renewable energy development in Algeria: Current perspective, energy scenario and sustainability issues. Renewable & Sustainable Energy Reviews, 16(7), 4445–4460. https://doi.org/10.1016/j.rser.2012.04.031
  43. Wadi, M., & Elmasry, W. (2021). Statistical analysis of wind energy potential using different estimation methods for Weibull parameters: a case study. Electrical Engineering, 103(6), 2573–2594. https://doi.org/10.1007/s00202-021-01254-0
  44. Wan, J., Zheng, F., Luan, H., Tian, Y., Li, L., Ma, Z., Xu, Z., & Li, Y. (2021). Assessment of wind energy resources in the urat area using optimized Weibull distribution. Sustainable Energy Technologies and Assessments, 47,101351. https://doi.org/10.1016/j.seta.2021.101351
  45. Wooten, R. D. (2011). Statistical analysis of the relationship between wind speed, pressure and temperature. Journal of Applied Sciences, 11(15), 2712–2722. https://doi.org/10.3923/jas.2011.2712.2722
  46. Wu, J., Wang, J., & Chi, D. (2013). Wind energy potential assessment for the site of Inner Mongolia in China. Renewable & Sustainable Energy Reviews, 21, 215–228. https://doi.org/10.1016/j.rser.2012.12.060

Last update:

  1. Renewable energy role in low-carbon economy and net-zero goal: Perspectives and prospects

    Van Giao Nguyen, Ranjna Sirohi, Minh Ho Tran, Thanh Hai Truong, Minh Thai Duong, Minh Tuan Pham, Dao Nam Cao. Energy & Environment, 2024. doi: 10.1177/0958305X241253772
  2. Wind power plant site selection problem solution using GIS and resource assessment and analysis of wind energy potential by estimating Weibull distribution function for sustainable energy production: The case of Bitlis/Turkey

    Sabir Rüstemli, Omer Güntas, Gökhan Şahin, Ahmet Koç, Wilfried van Sark, Sülem Şenyiğit Doğan. Energy Strategy Reviews, 56 , 2024. doi: 10.1016/j.esr.2024.101552

Last update: 2024-11-21 02:52:06

No citation recorded.