skip to main content

Enhancing microbial fuel cell performance with carbon powder electrode modifications for low-power sensors modules

1Centre for Sustainable Communication and Internet of Things (CSCIoT), Faculty of Engineering and Technology, Multimedia University, Melaka, Malaysia

2Department for Computer Engineering and Computer Science (CECS), School of Engineering and Computing (SOEC), MILA University, Nilai, Negeri Sembilan, Malaysia

3Faculty of Electrical Engineering, Universiti Malaya, Kuala Lumpur, Malaysia

Received: 8 Sep 2023; Revised: 10 Nov 2023; Accepted: 22 Nov 2023; Available online: 27 Nov 2023; Published: 1 Jan 2024.
Editor(s): H. Hadiyanto
Open Access Copyright (c) 2024 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Microbial Fuel Cell (MFC) is a promising technology for harnessing energy from organic compounds. However, the low power generation of MFCs remains a significant challenge that hinders their commercial viability. In this study, we reported three distinct modifications to the stainless-steel mesh (SSM), carbon cloth, and carbon felt electrodes using carbon powder (CP), a mixture of CP and ferrum, and a blend of CP with sodium citrate and ethanol. The MFC equipped with an SSM and CP anode showed a notable power density of 1046.89 mW.m-2. In comparison, the bare SSM anode achieved a maximum power density of 145.8 mW m-2. Remarkably, the 3D-modified SSM with a CP anode (3D-SSM-CP) MFC exhibited a substantial breakthrough, attaining a maximum power density of 1417.07 mW m-2. This achievement signifies a significant advancement over the performance of the unaltered SSM anode, underscoring the effectiveness of our modification approach. Subsequently, the 3D-SSM-CP electrode was integrated into single-chamber MFCs, which were used to power a LoRaWAN IoT device through a power management system. The modification methods improved the MFC performance while involving low-cost and easy fabricating techniques. The results of this study are expected to contribute to improving MFC's performance, bringing them closer to becoming a practical source of renewable energy.

Fulltext View|Download
Keywords: Anode Modification; Carbon Powder; Internet of Things (IoT); Microbial Fuel Cell; Power Management Systems; Renewable Energy; Stainless-Steel Mesh.
Funding: JABATAN PENDIDIKAN TINGGI KEMENTERIAN PENGAJIAN TINGGI MALAYSIA

Article Metrics:

  1. Bose, D., Bose, A., Kundani, D., Gupta, D., Jain, H. (2018). Comparative analysis of carbon cloth and aluminum electrodes using agar salt-bridge based microbial fuel cell for bioelectricity generation from effluent derived wastewater. Nature Environment and Pollution Technology, 17(4), 1201–1205. https://neptjournal.com/upload-images/NL-66-19-(17)B-3493.pdf
  2. Chen, X., Li, Y., Yuan, X., Li, N., He, W., & Liu, J. (2020). Synergistic effect between poly(diallyldimethylammonium chloride) and reduced graphene oxide for high electrochemically active biofilm in microbial fuel cell. Electrochimica Acta, 359, 136949. https://doi.org/10.1016/j.electacta.2020.136949
  3. Chong, P. L., Singh, A. K., & Kok, S. L. (2019a). Potential application of Aloe Vera-derived plant-based cell in powering wireless device for remote sensor activation. PLOS ONE, 14(12), e0227153. https://doi.org/10.1371/journal.pone.0227153
  4. Chong, P. L., Singh, A. K., & Kok, S. L. (2019b). Characterization of Aloe Barbadensis Miller leaves as a potential electrical energy source with optimum experimental setup conditions. PLOS ONE, 14(6), e0218758. https://doi.org/10.1371/journal.pone.0218758
  5. Chong, P. L., Singh, A. K., & Kong, F. Y. (2022). Renewable energy from living plants to power IoT sensor for remote sensing. Journal of Engineering Technology. 11(1) , https://journals.dbuniversity.ac.in/ojs/index.php/AJET/article/view/3613/952
  6. Duarte, K. D., & Kwon, Y. (2020). In situ carbon felt anode modification via codeveloping Saccharomyces cerevisiae living-template titanium dioxide nanoclusters in a yeast-based microbial fuel cell. Journal of Power Sources, 474, 228651. https://doi.org/10.1016/j.jpowsour.2020.228651
  7. Ewing, T., Babauta, J. T., Atci, E., Tang, N., Orellana, J., Heo, D., & Beyenal, H. (2014). Self-powered wastewater treatment for the enhanced operation of a facultative lagoon. Journal of Power Sources, 269, 284–292. https://doi.org/10.1016/j.jpowsour.2014.06.114
  8. Gajda, I., Greenman, J., Melhuish, C., & Ieropoulos, I. (2015). Simultaneous electricity generation and microbially-assisted electrosynthesis in ceramic MFCs. Bioelectrochemistry, 104, 58–64. https://doi.org/10.1016/j.bioelechem.2015.03.001
  9. Geetanjali, Rani, R., & Kumar, S. (2019a). Enhanced Performance of a Single Chamber Microbial Fuel Cell Using NiWO4/Reduced Graphene Oxide Coated Carbon Cloth Anode. Fuel Cells, 19(3), 299–308. https://doi.org/10.1002/fuce.201800120
  10. Geetanjali, Rani, R., & Kumar, S. (2019b). High-capacity polyaniline-coated molybdenum oxide composite as an effective catalyst for enhancing the electrochemical performance of the microbial fuel cell. International Journal of Hydrogen Energy, 44(31), 16933–16943. https://doi.org/10.1016/j.ijhydene.2019.04.201
  11. Guan, Y. F., Zhang, F., Huang, B. C., & Yu, H. Q. (2019). Enhancing electricity generation of microbial fuel cell for wastewater treatment using nitrogen-doped carbon dots-supported carbon paper anode. Journal of Cleaner Production, 229, 412–419. https://doi.org/10.1016/j.jclepro.2019.05.040
  12. Guo, K., Donose, B. C., Soeriyadi, A. H., Prévoteau, A., Patil, S. A., Freguia, S., Gooding, J. J., & Rabaey, K. (2014). Flame Oxidation of Stainless Steel Felt Enhances Anodic Biofilm Formation and Current Output in Bioelectrochemical Systems. Environmental Science & Technology, 48(12), 7151–7156. https://doi.org/10.1021/es500720g
  13. Ieropoulos, I. A., Stinchcombe, A., Gajda, I., Forbes, S., Merino-Jimenez, I., Pasternak, G., Sanchez-Herranz, D., & Greenman, J. (2016). Pee power urinal – microbial fuel cell technology field trials in the context of sanitation. Environmental Science: Water Research & Technology, 2(2), 336–343. https://doi.org/10.1039/c5ew00270b
  14. Jia, X., He, Z., Zhang, X., & Tian, X. (2016). Carbon paper electrode modified with TiO2 nanowires enhancement bioelectricity generation in microbial fuel cell. Synthetic Metals, 215, 170–175. https://doi.org/10.1016/j.synthmet.2016.02.015
  15. Khaled, F., Ondel, O., & Allard, B. (2016). Microbial fuel cells as power supply of a low-power temperature sensor. Journal of Power Sources, 306, 354–360. https://doi.org/10.1016/j.jpowsour.2015.12.040
  16. Li, H., Liao, B., Xiong, J., Zhou, X., Zhi, H., Liu, X., Li, X., & Li, W. (2018b). Power output of microbial fuel cell emphasizing interaction of anodic binder with bacteria. Journal of Power Sources, 379, 115–122. https://doi.org/10.1016/j.jpowsour.2018.01.040
  17. Li, M., Zhou, M., Tian, X., Tan, C., McDaniel, C. T., Hassett, D. J., & Gu, T. (2018a). Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity. Biotechnology Advances, 36(4), 1316–1327. https://doi.org/10.1016/j.biotechadv.2018.04.010
  18. Li, S., Cheng, C., & Thomas, A. (2016). Carbon‐Based Microbial‐Fuel‐Cell Electrodes: From Conductive Supports to Active Catalysts. Advanced Materials, 29(8). https://doi.org/10.1002/adma.201602547
  19. Liang, Y., Feng, H., Shen, D., Li, N., Guo, K., Zhou, Y., Xu, J., Chen, W., Jia, Y., & Huang, B. (2017). Enhancement of anodic biofilm formation and current output in microbial fuel cells by composite modification of stainless steel electrodes. Journal of Power Sources, 342, 98–104. https://doi.org/10.1016/j.jpowsour.2016.12.020
  20. Liu, Y. C., Hung, Y. H., Sutarsis, Hsu, C. C., Ni, C. S., Liu, T. Y., Chang, J. K., & Chen, H. Y. (2021). Effects of surface functional groups of coal-tar-pitch-derived nanoporous carbon anodes on microbial fuel cell performance. Renewable Energy, 171, 87–94. https://doi.org/10.1016/j.renene.2021.01.149
  21. Malinis, M. P. D., Velasco, H. J. F., & Pamintuan, K. R. (2023). Performance evaluation of the novel 3D-printed aquatic plant-microbial fuel cell assembly with Eichhornia crassipes rnia crassipes. International Journal of Renewable Energy Development, 12(5), 942-951, https://doi.org/10.14710/ijred.2023.53222
  22. Mohamed, H. O., Sayed, E. T., Obaid, M., Choi, Y. J., Park, S. G., Al-Qaradawi, S., & Chae, K. J. (2018). Transition metal nanoparticles doped carbon paper as a cost-effective anode in a microbial fuel cell powered by pure and mixed biocatalyst cultures. International Journal of Hydrogen Energy, 43(46), 21560–21571. https://doi.org/10.1016/j.ijhydene.2018.09.199
  23. Oliveira, V., Simões, M., Melo, L., & Pinto, A. (2013). Overview on the developments of microbial fuel cells. Biochemical Engineering Journal, 73, 53–64. https://doi.org/10.1016/j.bej.2013.01.012
  24. Palmero, D. P. E., & Pamintuan, K. R. S. (2023). Characterization of plant growth promoting potential of 3D-printed plant microbial fuel cells. International Journal of Renewable Energy Development, 12(5), 842–852. https://doi.org/10.14710/ijred.2023.52291
  25. Prasad, J., & Tripathi, R. K. (2018). Scale up sediment microbial fuel cell for powering Led lighting. International Journal of Renewable Energy Development, 7(1), 53. https://doi.org/10.14710/ijred.7.1.53-58
  26. Pu, K. B., Ma, Q., Cai, W. F., Chen, Q. Y., Wang, Y. H., & Li, F. J. (2018). Polypyrrole modified stainless steel as high performance anode of microbial fuel cell. Biochemical Engineering Journal, 132, 255–261. https://doi.org/10.1016/j.bej.2018.01.018
  27. Qiao, Y., Li, C. M., Bao, S. J., & Bao, Q. L. (2007). Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. Journal of Power Sources, 170(1), 79–84. https://doi.org/10.1016/j.jpowsour.2007.03.048
  28. Wang, Y., Wen, Q., Chen, Y., & Qi, L. (2017). A novel polyaniline interlayer manganese dioxide composite anode for high-performance microbial fuel cell. Journal of the Taiwan Institute of Chemical Engineers, 75, 112–118. https://doi.org/10.1016/j.jtice.2017.03.006
  29. Yang, G., & Wang, J. (2019). Enhancing biohydrogen production from waste activated sludge disintegrated by sodium citrate. Fuel, 258, 116177. https://doi.org/10.1016/j.fuel.2019.116177
  30. Yang, L., Wang, A., Wen, Q., & Chen, Y. (2021). Modified cobalt-manganese oxide-coated carbon felt anodes: an available method to improve the performance of microbial fuel cells. Bioprocess and Biosystems Engineering, 44(12), 2615–2625. https://doi.org/10.1007/s00449-021-02631-6
  31. Ying, X., Shen, D., Wang, M., Feng, H., Gu, Y., & Chen, W. (2018). Titanium dioxide thin film-modified stainless steel mesh for enhanced current-generation in microbial fuel cells. Chemical Engineering Journal, 333, 260–267. https://doi.org/10.1016/j.cej.2017.09.132
  32. You, S. J., Wang, X. H., Zhang, J. N., Wang, J. Y., Ren, N. Q., & Gong, X. B. (2011). Fabrication of stainless steel mesh gas diffusion electrode for power generation in microbial fuel cell. Biosensors and Bioelectronics, 26(5), 2142–2146. https://doi.org/10.1016/j.bios.2010.09.023
  33. Zhang, Y., Sun, J., Hu, Y., Li, S., & Xu, Q. (2013). Carbon nanotube-coated stainless steel mesh for enhanced oxygen reduction in biocathode microbial fuel cells. Journal of Power Sources, 239, 169–174. https://doi.org/10.1016/j.jpowsour.2013.03.115
  34. Zheng, S., Yang, F., Chen, S., Liu, L., Xiong, Q., Yu, T., Zhao, F., Schröder, U., & Hou, H. (2015). Binder-free carbon black/stainless steel mesh composite electrode for high-performance anode in microbial fuel cells. Journal of Power Sources, 284, 252–257. https://doi.org/10.1016/j.jpowsour.2015.03.014
  35. Zhong, D., Liu, Y., Liao, X., Zhong, N., & Xu, Y. (2018). Facile preparation of binder-free NiO/MnO2-carbon felt anode to enhance electricity generation and dye wastewater degradation performances of microbial fuel cell. International Journal of Hydrogen Energy, 43(51), 23014–23026. https://doi.org/10.1016/j.ijhydene.2018.10.144
  36. Zhou, S., Lin, M., Zhuang, Z., Liu, P., & Chen, Z. (2019). Biosynthetic graphene enhanced extracellular electron transfer for high performance anode in microbial fuel cell. Chemosphere, 232, 396–402. https://doi.org/10.1016/j.chemosphere.2019.05.191

Last update:

  1. A Raspberry Pi-Powered IoT Smart Farming System for Efficient Water Irrigation and Crop Monitoring

    Chong Peng Lean, Gophinath Krishnan, Chen Li, Kong Feng Yuan, Ng Poh Kiat, Mohammed Reyasudin Basir Khan. Malaysian Journal of Science and Advanced Technology, 2024. doi: 10.56532/mjsat.v4i2.295
  2. AI and ML in IR4.0: A Short Review of Applications and Challenges

    Krishna Sannasy Rao, Chong Peng Lean, Poh Kiat Ng, Feng Yuan Kong , Mohammed Reyasudin Basir Khan, Daniel Ismail, Chen Li. Malaysian Journal of Science and Advanced Technology, 2024. doi: 10.56532/mjsat.v4i2.291
  3. Transformative Applications of IoT in Diverse Industries: A Mini Review

    Krishna Sannasy Rao, Chong Peng Lean, Kong Feng Yuan, Ng Poh Kiat, Chen Li, Mohammed Reyasudin Basir Khan, Daniel Ismail. Malaysian Journal of Science and Advanced Technology, 2024. doi: 10.56532/mjsat.v4i2.292
  4. Improving Fish Quality and Yield: An Automated Monitoring System for Intensive Aquaculture

    Anne Dashini Kannan, Chong Peng Lean, Li Chen, Feng Yuan Kong , Poh Kiat Ng, Mohammed Reyasudin Basir Khan. Malaysian Journal of Science and Advanced Technology, 2024. doi: 10.56532/mjsat.v4i2.296
  5. IoT-enabled Smart Weather Stations: Innovations, Challenges, and Future Directions

    Silvia Ganesan, Chong Peng Lean , Li Chen, Kong Feng Yuan, Ng Poh Kiat, Mohammed Reyasudin Basir Khan . Malaysian Journal of Science and Advanced Technology, 2024. doi: 10.56532/mjsat.v4i2.293
  6. IoT-enabled Greenhouse Systems: Optimizing Plant Growth and Efficiency

    Swathi Manoharan, Chong Peng Lean , Chen Li, Kong Feng Yuan, Ng Poh Kiat, Mohammed Reyasudin Basir Khan. Malaysian Journal of Science and Advanced Technology, 2024. doi: 10.56532/mjsat.v4i2.294

Last update: 2024-04-30 20:26:49

No citation recorded.