skip to main content

Improving FTO/ZnO/In2S3/CuInS2/Mo solar cell efficiency by optimizing thickness and carrier concentrations of ZnO, In2S3 and CuInS2 thin films using Silvaco-Atlas Software

1Department of Physics, Kenyatta University P.O.Box 43844-00100 Nairobi, Kenya

2Département de Physique, Laboratoire sur l’Energie Solaire, Université de Lomé, 01BP1515, Lome, Togo

3Centre d’Excellence Régional pour la Maîtrise de l’Electricité (CERME), Université de Lomé, 01BP1515, Lome, Togo

Received: 29 Aug 2023; Revised: 30 Sep 2023; Accepted: 22 Oct 2023; Available online: 29 Oct 2023; Published: 1 Nov 2023.
Editor(s): H Hadiyanto
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

Optimization of optical and electrical properties of active semiconducting layers is required to enhance thin film solar cells' efficiency and consequently became the cornerstone for sustainable energy production. Computational studies are one of the ways forward to optimize solar cells’ characteristics. In this study, Silvaco-Atlas, a powerful software that excels in both 2D and 3D electrical simulations of semiconductors has been used for the simulation in order to investigate the solar cell properties. The architecture of the solar cell simulated was FTO/ZnO/In2S3/CuInS2/Mo. This study aims to optimize solar cell efficiency by optimizing film thicknesses and carrier concentrations via simulation. The designed solar cell was exposed to the presence of a sun spectrum of AM1.5 from a 1kW/m2 incident power density at 300K. The thickness values of the window (ZnO), absorber (CuInS2) and buffer (In2S3) layers were varied to record a solar cell's optimum thickness. The resulting FTO/ZnO/In2S3/CuInS2/Mo solar cell formed by simulation is presented. The best efficiency and fill factor of the solar cell simulated were found to be 41.67% and 89.19%, respectively. The recorded values of current density and the open circuit voltage of the cell were 40.33mA/cm2 and 1.15 V, respectively. Additionally, the maximum power of the simulated solar cell device was 41.68 mW. Optimization results revealed that the most efficient cell found was made up of a window layer with a thickness of 0.03μm, an absorber layer with a thickness of 6.0μm and a buffer layer with a thickness of 0.2μm. The optimized carrier concentration of ZnO, In2S3 and CuInS2 was respectively 1e21 cm-3, 1e20 cm-3, 3e18 cm-3 and the optimized Al-doped ZnO value was 1e25 cm-3. The Absorption spectra indicated that the solar cell's peak absorption occurs between 350 nm and 1250 nm and presented a good external quantum efficiency (EQE) of around 84.52% to 92.83% which indicates good efficiency in the visible domain. This performance is attributed to the transparency of FTO, ZnO and good absorption of In2S3 and CuInS2 thin films.

Fulltext View|Download
Keywords: Solar cell; efficiency; fill factor; open voltage; short circuit current density; Silvaco-Atlas
Funding: PASET-RSIF

Article Metrics:

  1. Amar, H., Amir, M., Ghodbane, H., Babes, B., Kateb, M. N., Zidane, M. A., & Rauane, A. (2021). Electrical сharacteristics study of heterojunction solar сells CdS/CIGS. Semiconductor Physics, Quantum Electronics and Optoelectronics, 24(04), 457–465. https://doi.org/10.15407/spqeo24.04.457
  2. Asaduzzaman, M., Hosen, B., Ali, K., & Bahar, A. N. (2017). Non-Toxic Buffer Layers in Flexible Cu ( In , Ga ) Se 2 Photovoltaic Cell Applications with Optimized Absorber Thickness. International Journal of Photoenergy, 2017(4561208), 1–8. https://doi.org/10.1155/2017/4561208
  3. Baishya, K., Ray, J. S., Dutta, P., Das, P. P., & Das, S. K. (2018). Graphene-mediated band gap engineering of ­ WO 3 nanoparticle and a relook at Tauc equation for band gap evaluation. Applied Physics A, 0(0), 0. https://doi.org/10.1007/s00339-018-2097-0
  4. Belkassmi, Y., Gueraoui, K., Elmaimouni, L., & Hassanain, N. (2017). Modeling and Simulation of Photovoltaic Module Based on One Diode Model Using Matlab / Simulink. International Conference on Engineering & MIS (ICEMIS), Monastir(Tunisia 2017), 1–6. https://doi.org/10.1109/ICEMIS.2017.8272965
  5. Bouarissa, A. G. N., & Daoudi, A. N. F. (2018). Characteristics and optimization of ZnO / CdS / CZTS photovoltaic solar cell. Applied Physics A, 0(0), 0. https://doi.org/10.1007/s00339-018-1626-1
  6. Boukortt, N. (2018). Electrical Characterization of n-ZnO / c-Si 2D Heterojunction Solar Cell by Using TCAD Tools. Silicon, 2018(September), 1–7. https://doi.org/10.1007/s12633-017-9750-7
  7. Boyd, M. T., Klein, S. A., Reindl, D. T., & Dougherty, B. P. (2011). Evaluation and validation of equivalent circuit photovoltaic solar cell performance models. Journal of Solar Energy Engineering, Transactions of the ASME, 133(2). https://doi.org/10.1115/1.4003584
  8. Chen, H., Wang, C., Wang, J., Hu, X., Zhou, S., Chen, H., Wang, C., Wang, J., Hu, X., & Zhou, S. (2014). First-principles study of point defects in solar cell semiconductor CuInS2 First-principles study of point defects in solar cell semiconductor CuInS 2. Journal of Applied Physics, 084513(2012), 1–6. https://doi.org/10.1063/1.4762001
  9. Chen, L., Lee, J., Shafarman, W. N., Ag, A., In, C., Se, G., In, C., & Se, G. (2014). The Comparison of ( Ag , Cu )( In , Ga ) Se 2 and Cu ( In , Ga ) Se 2 Thin Films Deposited by Three-Stage Coevaporation. IEEE Journal of Photovoltaics, 4(1), 447–451. https://doi.org/10.1109/JPHOTOV.2013.2280471
  10. Dabbabi, S., Nasr, T. Ben, Ammar, S., & Kamoun, N. (2018). Synthesis and Characterization of Zinc-Tin-mixed oxides thin films. Superlattices and Microstructures. https://doi.org/10.1016/j.spmi.2018.05.058
  11. Dabbabi, S., Nasr, T. Ben, & Kamoun-Turki, N. (2017). Parameters optimization of CIGS solar cell using 2D physical modeling. Results in Physics, 7(July), 4020–4024. https://doi.org/10.1016/j.rinp.2017.06.057
  12. Dabbabi, S., Seboui, Z., Tlili, M., & Jebbari, N. (2021). A new optimization approach for high efficiency of FTO / InS / CIS heterojunction solar cells. International Journal of Modelling and Simulation, 00(00), 1–9. https://doi.org/10.1080/02286203.2021.1945896
  13. Dabbabi, S., Seboui, Z., Tlili, M., Jebbari, N., Garcia-Loureiro, A., & Kamoun, N. (2022). A new optimization approach for high efficiency of FTO/InS/CIS heterojunction solar cells. International Journal of Modelling and Simulation, 42(4), 561–569. https://doi.org/10.1080/02286203.2021.1945896
  14. Dambhare, M., Butey, B., & Moharil, S. V. (2021). Solar photovoltaic technology : A review of different types of solar cells and its future trends Solar photovoltaic technology : A review of different types of solar cells and its future trends. Journal of Physics: Conference Series, 1913(2021), 0–16. https://doi.org/10.1088/1742-6596/1913/1/012053
  15. Dash, R., & Ali, S. M. (2014). Comparative study of one and two dioe model. International Journal of Research in Engineering and Technology, 03(10), 190–194. http://www.ijret.org
  16. Di Iorio, Y., Berruet, M., Gau, D. L., Spera, E. L., Pereyra, C. J., Marotti, R. E., & Vázquez, M. (2017). Efficiency Improvements in Solution-Based CuInS2 Solar Cells Incorporating a Cl-Doped ZnO Nanopillars Array. Physica Status Solidi (A) Applications and Materials Science, 214(12). https://doi.org/10.1002/PSSA.201700191
  17. Ghavami, F., & Salehi, A. (2019). High-efficiency CIGS solar cell by optimization of doping concentration, thickness and energy band gap. Modern Physics Letters B, 2050053(December), 1–11. https://doi.org/10.1142/S0217984920500530
  18. Grigorovici, R., & Vancu, A. (1966). Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Stat. Sol., 15(627), 627–637 https://doi.org/10.1002/pssb.19660150224
  19. Hanket, G. M., Boyle, J. H., Shafarman, W. N., & Teeter, G. (2010). Wide-bandgap (AgCu )( InGa) Se 2 absorber layers deposited by three stage co-evaporation. IEEE Photovoltaic Specialists Conference, 00342(2010), 3425–3429. https://doi.org/ 10.1109/PVSC.2010.5614576
  20. Hosen, B., Bahar, A. N., & Ali, K. (2017). Data in Brief Modeling and performance analysis dataset of a CIGS solar cell with ZnS buffer layer. Data in Brief, 14, 246–250. https://doi.org/10.1016/j.dib.2017.07.054
  21. Jackson, P., Wuerz, R., Hariskos, D., Lotter, E., Witte, W., & Powalla, M. (2016). Effects of heavy alkali elements in Cu ( In , Ga ) Se 2 solar cells with efficiencies up to 22 . 6 %. Phys. Status Solidi RRL, 10(8), 583–586. https://doi.org/10.1002/pssr.201600199
  22. Khoshsirat, N., Yunus, N., & Hamidon, M. (2015). Analysis of absorber and buffer layer band gap grading on CIGS thin film solar cell performance using SCAPS. Pertanika Journal of Science and Technology, 23(2), 241–250. https://www.researchgate.net/publication/281720102
  23. Lv, H., Wu, H., Wu, X., Zheng, J. Z., & Liu, Y. (2022). Fabricating WS2/Mn0.5Cd0.5S/CuInS2 hierarchical tandem p-n heterojunction for highly efficient hydrogen production. Applied Surface Science, 593(April), 153448. https://doi.org/10.1016/j.apsusc.2022.153448
  24. Nya, T., Kenfack, D., Maurel, G., Wilson, G., Touolak, T., & Jean, N. (2019). Journal of King Saud University – Science Highlighting some layers properties in performances optimization of CIGSe based solar cells : Case of Cu ( In , Ga ) Se – ZnS. Journal of King Saud University - Science, 31(4), 1404–1413. https://doi.org/10.1016/j.jksus.2018.03.026
  25. Onuma, Y., Takeuchi, K., Ichikawa, S., Harada, M., Tanaka, H., Koizumi, A., & Miyajima, Y. (2001). Preparation and characterization of CuInS2 thin films solar cells with large grain. Solar Energy Materials and Solar Cells, 69(3), 261–269. https://doi.org/10.1016/S0927-0248(00)00395-0
  26. Phung, H., & Do, P. H. (2021). Scaps simulation of ZnO/In2S3/Cu2Sn3S7/Mo solar cell scaps simulation of ZnO/In2S3/Cu2Sn3S7/Mo solar cell. Journal of Science and Technology, 54(2016), 183–189. https://doi.org/10.15625/2525-2518/54/1A/11824
  27. Regmi, G., Ashok, A., Chawla, P., Semalti, P., Velumani, S., Sharma, S. N., & Castaneda, H. (2020). Perspectives of chalcopyrite-based CIGSe thin-film solar cell: a review. Journal of Materials Science: Materials in Electronics, 31(10), 7286–7314. https://doi.org/10.1007/s10854-020-03338-2
  28. Revathi, N., Prathap, P., Miles, R. W., & Reddy, K. T. R. (2010). Solar Energy Materials & Solar Cells Annealing effect on the physical properties of evaporated In 2 S 3 films $. Solar Energy Materials and Solar Cells, 94(9), 1487–1491. https://doi.org/10.1016/j.solmat.2010.02.044
  29. Revathi, N., Prathap, P., & Reddy, K. T. R. (2009). Thickness dependent physical properties of close space evaporated In 2 S 3 films. Solid State Sciences, 11(7), 1288–1296. https://doi.org/10.1016/j.solidstatesciences.2009.04.019
  30. Salim, K. (2017). Etude par simulation numérique d ’ une cellule solaire en CIGS Etude par simulation numérique d ’ une cellule solaire en CIGS. Université Mohamed Khider Biskra
  31. Santhosh, M. V, Deepu, D. R., Kartha, C. S., Kumar, K. R., & Vijayakumar, K. P. (2014). All sprayed ITO-free CuInS 2 / In 2 S 3 solar cells. Solar Energy, 108(2014), 508–514. https://doi.org/10.1016/j.solener.2014.07.001
  32. Shang, X., Wang, Z., Li, M., Zhang, L., Fang, J., Tai, J., & He, Y. (2014). A numerical simulation study of CuInS 2 solar cells. Thin Solid Films, 550, 649–653. https://doi.org/10.1016/j.tsf.2013.10.047
  33. Sharma, R. K., Chouryal, Y. N., Chaudhari, S., Saravanakumar, J., Dey, S. R., & Ghosh, P. (2017). Adsorption-Driven Catalytic and Photocatalytic Activity of Phase Tuned In2S3 Nanocrystals Synthesized via Ionic Liquids. ACS Applied Materials and Interfaces, 9(13), 11651–11661. https://doi.org/10.1021/acsami.7b01092
  34. Silvaco, I. (2019). Atlas User’s Manual, Device Simulation Software. 408, 567–1000. https://silvaco.com
  35. Song, Z., Phillips, A. B., Xie, Y., Khanal, R. R., & Heben, M. J. (2013). The Performance of Nanocrystalline CuInS 2 / In 2 S 3 / SnO 2 Heterojunction Solar Cells Prepared by Chemical Spray Pyrolysis. IEEE, 2540–2544. https://doi.org/ 10.1109/PVSC.2013.6744992
  36. Stutenbaeumer, U., & Mesfin, B. (1999). Equivalent model of monocrystalline, polycrystalline and amorphous silicon solar cells. Renewable Energy, 18(4), 501–512. https://doi.org/10.1016/S0960-1481(98)00813-1
  37. Sutanto, H., Durri, S., Wibowo, S., Hadiyanto, H., & Hidayanto, E. (2016). Rootlike Morphology of ZnO:Al Thin Film Deposited on Amorphous Glass Substrate by Sol-Gel Method. Physics Research International, 2016(3). https://doi.org/10.1155/2016/4749587
  38. Sutanto, H., Nurhasanah, I., Hidayanto, E., Wibowo, S., & Hadiyanto. (2015). Synthesis and characterization of ZnO:TiO2 nano composites thin films deposited on glass substrate by sol-gel spray coating technique. AIP Conference Proceedings, 1699. https://doi.org/10.1063/1.4938320
  39. Sutanto, H., Wibowo, S., Hadiyanto, Arifin, M., & Hidayanto, E. (2017). Photocatalytic activity of cobalt-doped zinc oxide thin film prepared using the spray coating technique. Materials Research Express, 4(7). https://doi.org/10.1088/2053-1591/aa7310
  40. Sutanto, H., Wibowo, S., Nurhasanah, I., Hidayanto, E., & Hadiyanto, H. (2016). Ag doped ZnO thin films synthesized by spray coating technique for methylene blue photodegradation under UV irradiation. International Journal of Chemical Engineering, 2016(6195326), 1–6. https://doi.org/10.1155/2016/6195326
  41. Sylla, A., Ignace, N. A., Siaka, T., Vilcot, J., Sylla, A., Ignace, N. A., Siaka, T., & Theoretical, J. V. (2021). Theoretical analysis of the effect of the interfacial MoSe _ 2 layer in CIGS-based solar cells. Open Journal of Modelling and Simulation, 09(4), 339–350. https://doi.org/10.4236/ojmsi.2021.94022
  42. Taraque, M. A. R., Chowdhury, F. S., & Hasanat, L. Y. (2019). Design of Single Junction Si Solar Cell and Its Efficiency Investigation Using SILVACO ATLAS. National Conference on Physics ForTechnology Development, December 2012, 0–4. https://www.researchgate.net/publication/332230309
  43. Tchakpedeou, A.-B., Lare, Y., Napo, K., & Fousseni, A. (2022). An Improved Levenberg–Marquardt Approach With a New Reduced Form for the Identification of Parameters of the One-Diode Photovoltaic Model. Journal of Solar Energy Engineering, 144(4). https://doi.org/10.1115/1.4053624
  44. Theresa, T., Mathew, M., Kartha, C. S., Vijayakumar, K. P., Abe, T., & Kashiwaba, Y. (2005). CuInS 2 / In 2 S 3 thin film solar cell using spray pyrolysis technique having 9 . 5 % efficiency. Solar Energy Materials and Solar Cells, 89(2005), 27–36. https://doi.org/10.1016/j.solmat.2004.12.005
  45. Thirumalaisamy, L., Palanivel, S., Raliya, R., Kavadiya, S., Sethuraman, K., & Biswas, P. (2019). Single-step growth of CuInS2 nanospheres morphology thin films by electrospray chemical aerosol deposition technique. Materials Letters, 238, 206–209. https://doi.org/10.1016/j.matlet.2018.12.021
  46. Thomas, T., Kumar, K. R., Kartha, C. S., & Vijayakumar, K. P. (2015). Simple ‘ one step ’ spray process for CuInS 2 / In 2 S 3 heterojunctions on flexible substrates for photovoltaic applications. Thin Films for Solar and Energy Technology VII, 9561(95610J), 1–6. https://doi.org/10.1117/12.2187065
  47. Tobbeche, S., Kalache, S., Elbar, M., Kateb, M. N., & Serdouk, M. R. (2019). Improvement of the CIGS solar cell performance : structure based on a ZnS buffer layer Improvement of the CIGS solar cell performance : structure based on a ZnS buffer layer. Optical and Quantum Electronics, 51:284(August), 1–13. https://doi.org/10.1007/s11082-019-2000-z
  48. Trigo, J. F. Ã., Asenjo, B., Herrero, J., & Gutie, M. T. (2008). Solar Energy Materials & Solar Cells Optical characterization of In 2 S 3 solar cell buffer layers grown by chemical bath and physical vapor deposition. Solar Energy Materials & Solar Cells, 92(2008), 1145–1148. https://doi.org/10.1016/j.solmat.2008.04.002
  49. Wai, H. S. (2022). Effect of Aluminum Doping Ratios on the Properties of Aluminum-Doped Zinc Oxide Films Deposited by Mist Chemical Vapor Deposition Method Applying for Photocatalysis. Nanomaterials Article, 12(195), 1–11. https://doi.org/10.3390/nano12020195
  50. Wang, A., & Xuan, Y. (2017). A detailed study on loss processes in solar cells. Energy. https://doi.org/10.1016/j.energy.2017.12.058
  51. Wijesundera, R. P., & Siripala, W. (2004). Preparation of CuInS 2 thin films by electrodeposition and sulphurisation for applications in solar cells. Solar Energy Materials & Solar Cells, 81(2004), 147–154. https://doi.org/10.1016/j.solmat.2003.09.002
  52. Wijewardane, S., & Kazmerski, L. L. (2023). Inventions, innovations, and new technologies: Flexible and lightweight thin-film solar PV based on CIGS, CdTe, and a-Si:H. Solar Compass, 7(May), 100053. https://doi.org/10.1016/j.solcom.2023.100053
  53. Yang, Q., Yang, S., Xi, T., Li, H., Yi, J., & Zhong, J. (2022). Gradient doping simulation of perovskite solar cells with CH3NH3Sn1−xPbxI3 as the absorber layer. Current Applied Physics, 44(August), 55–62. https://doi.org/10.1016/j.cap.2022.08.012

Last update:

  1. Numerical Investigation of a Highly Efficient Hole Transport Layer-Free Solid-State Dye-Sensitized Solar Cell Based on N719 Dye

    George G. Njema, Joshua K. Kibet, Nicholas Rono, Edson L. Meyer. Journal of Electronic Materials, 53 (6), 2024. doi: 10.1007/s11664-024-11068-y
  2. Energy Status in Africa: Challenges, Progress and Sustainable Pathways

    Maklewa Agoundedemba, Chang Ki Kim, Hyun-Goo Kim. Energies, 16 (23), 2023. doi: 10.3390/en16237708

Last update: 2024-09-07 12:00:21

No citation recorded.