skip to main content

Transition metal-based materials and their catalytic influence on MgH2 hydrogen storage: A review

Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria, South Africa

Received: 30 Aug 2023; Revised: 8 Oct 2023; Accepted: 26 Oct 2023; Available online: 31 Oct 2023; Published: 1 Nov 2023.
Editor(s): Rock Keey Liew
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Abstract

The dependence on fossil fuels for energy has culminated in its gradual depletion and this has generated the need to seek alternative source that will be environmentally friendly and sustainable. Hydrogen stands to be promising in this regard as energy carrier which has been proven to be efficient. Magnesium hydride (MgH2) can be used in storing hydrogen because of its availability, light weight and low cost. In this review, monoatomic, alloy, intermetallic and composite forms of Ti, Ni, V, Mo, Fe, Cr, Co, Zr and Nb as additives on MgH2 are discussed. Through ball milling, additive reacts with MgH2 to form compounds including TiH2, Mg2Ni, Mg2NiH4, V2O, VH2, MoSe, Mg2FeH6, NbH and Nb2O5which remain stable after certain de/hydrogenation cycles. Some monoatomic transition metals remain unreacted even after de/hydrogenation cycles. These formed compounds, including stable monoatomic transition metals, impart their catalytic effects by creating diffusion channels for hydrogen via weakening Mg - H bond strength. This reduces hydrogen de/sorption temperatures, activation energies and in turn, hastens hydrogen desorption kinetics of MgH2. Hydrogen storage output of MgH2/transition metal-based materials depend on additive type, ratio of MgH2/additive, ball milling time, ball –to combining materials ratio and de/hydrogenation cycle. There is a need for more investigations to be carried out on nanostructured binary and ternary transition metal-based materials as additives to enhance the hydrogen storage performance of MgH2.  In addition, the already established compounds (listed above) formed after ball milling or dehydrogenation can be processed and directly doped into MgH2

Fulltext View|Download
Keywords: Dehydrogenation; Fossil fuel; Hydride; Hydrogenation; Transition metal

Article Metrics:

  1. Aceves, S.M., Frias, J.M., & Villazana, G. (2000). Analytical and Experimental Evaluation of Insulated Pressure Vessels for Cryogenic Hydrogen Storage. International Journal of Hydrogen Energy, 25(11), 1075-1085; https://doi.org/10.1016/S0360-3199(00)00016-1
  2. Aceves, S.M., Loza, F.E., Orozco, E.L., Ross, T.O., Weisberg, A.H., Brunner, T.C., & Kircher, O. (2010). High-density Automotive Hydrogen Storage with Cryogenic Capable Pressure Vessels. International Journal of Hydrogen Energy, 35(3), 1219-1226; https://doi.org/10.1016/j.ijhydene.2009.11.069
  3. Al Ghafri, S.Z.S., Swanger, A., Jusko, V., Siahvashi, A., Perez, F., Johns, M.L., & May, E.F. (2022). Modelling of Liquid Hydrogen Boil-Off. Energies, 15(3), 1-16; https://doi.org/10.3390/en15031149
  4. Ali, N.A., Yahya, M.S., Sazelee, N., Din, M.F.M., & Ismail, M. (2022). Influence of Nanosized CoTiO3 Synthesized via a Solid-State Method on the Hydrogen Storage Behavior of MgH2. Nanomaterials, 12(7), 1-18; https://doi.org/10.3390/nano12173043
  5. An, C., Liu, G., Li, L., Wang, Y., Chen, C.C., Wang, Y., Jiao, L., & Yuan, H. (2014). In Situ Synthesized One-Dimensional Porous Ni@C Nanorods as Catalysts for Hydrogen Storage Properties of MgH2. Nanoscale, 6, 3223–3230; 10.1039/C3NR05607D
  6. Assfour, B., Leoni, S., Seifert, G., & Baburin, I.A. (2011). Packings of Carbon Nanotubes – New Materials for Hydrogen Storage. Advanced Materials, 23, 1237–1241; https://doi.org/10.1002/adma.201003669
  7. Barison, S., Agresti, F., Russo, S.L., Maddalena, A., Palade, P., Principi, G., & Torzo, G. (2008). A Study of the LiNH2–MgH2 System for Solid State Hydrogen Storage. Journal of Alloys and Compounds, 459(1–2), 343-347; https://doi.org/10.1016/j.jallcom.2007.04.278
  8. Baroutaji, A., Arjunan, A., Ramadan, A., Alaswad, A., Achour, H., Abdelkareem, M.A., & Olabi, A.G. (2022). Nanocrystalline Mg2Ni for Hydrogen Storage. Encyclopedia of Smart Materials, 2, 366-370; https://doi.org/10.1016/B978-0-12-815732-9.00061-9
  9. Bassetti, A., Bonetti, E., Pasquini, L., Montone, A., Grbovic, J., & Antisari, M.V. (2005). Hydrogen Desorption from Ball Milled MgH2 Catalyzed with Fe. The European Physical Journal B, 43, 19-27; https://doi.org/10.1140/epjb/e2005-00023-9
  10. Baum L., Meyer, L., & Ze´lis, M. (22007). Hydrogen Storage Properties of the Mg/Fe System. Physica B, 389,189–192; https://doi.org/10.1016/j.physb.2006.07.054
  11. Ben, T., Pei, C., Zhang, D., Xu, J., Deng, F., Jing, X., & Qiu, S. (2011). Gas Storage in Porous Aromatic Frameworks (PAFs). Energy & Environmental Science, 4, 3991–3999; https://doi.org/10.1039/C1EE01222C
  12. Berezovets, V.V., Denys, R.V., Zavaliy, I.Y., & Kosarchyn, Y.V. (2022).Effect of Ti-Based Nanosized Additives on the Hydrogen Storage Properties of MgH2. International Journal of Hydrogen Energy, 47(11), 7289-7298; https://doi.org/10.1016/j.ijhydene.2021.03.019
  13. Bhatnagar, A., Johnson, J.K., Shaz, M.A., & Srivastava, O.N. (2018). TiH2 as a Dynamic Additive for Improving the De/Rehydrogenation Properties of MgH2: A Combined Experimental and Theoretical Mechanistic Investigation. The Journal of Physical Chemistry C, 122(37), 21248–21261; https://doi.org/10.1021/acs.jpcc.8b07640
  14. Bhatnagar, A., Pandey, S.K., Vishwakarma, A.K., Singh, S., Shukla, W., Soni, P.K., Shaz, M.A., & Srivastava, O.N. (2016). Fe3O4@Graphene as a Superior Catalyst for Hydrogen De/Absorption from/in MgH2/Mg. Journal of Materials Chemistry A, 4, 14761–14772; https://doi.org/10.1039/c6ta05998h
  15. Cabo, M., Garroni, S., Pellicer, .E., Milanese, C., Girella, A., Marini, A., Rossinyol, E., Suriñach, S., & Baró, M.D. (2011). Hydrogen Sorption Performance of MgH2 Doped with Mesoporous Nickel- and Cobalt-Based Oxides. International Journal of Hydrogen Energy, 36(9), 5400-5410; https://doi.org/10.1016/j.ijhydene.2011.02.038
  16. Chen, F., Liang, J., Zhao, J., Tao, Z., & Chen, J. (2008). Biomass Waste-Derived Microporous Carbons with Controlled Texture and Enhanced Hydrogen Uptake. Chemistry of Materials, 20(5), 1889–1895; https://doi.org/10.1021/cm702816x
  17. Chen, G., Zhang, Y., Chen, J., Zhu, Y., & Li, L. (2018). Enhancing Hydrogen Storage Performances of MgH2 by Ni Nano-Particles Over Mesoporous Carbon CMK-3. Nanotechnology, 29, 1-11; https://doi.org/10.1088/1361-6528/aabcf3
  18. Chen, M., Pu, Y., Li, Z., Huang, G., Liu, X., Lu, Y., Tang, W., Xu, L., Liu, S., Yu, R., & Shui1, J. (2020). Synergy between Metallic Components of MoNi Alloy for Catalyzing Highly Efficient Hydrogen Storage of MgH2. Nano Research, 1-7; https://doi.org/10.1007/s12274-020-2808-7
  19. Chen, R., Wang, X., Xu, L., Chen, L., Li, S., & Chen, C. (2010).An Investigation on the Reaction Mechanism of LiAlH4–MgH2 Hydrogen Storage System. Materials Chemistry and Physics, 124(1), 83-87; https://doi.org/10.1016/j.matchemphys.2010.05.07
  20. Chen, Y., Wu, C.Z., Wang, P., & Cheng, H.M. (2006). Structure and Hydrogen Storage Property of Ball-Milled LiNH2/MgH2 Mixture. International Journal of Hydrogen Energy, 31(9), 1236-1240; https://doi.org/10.1016/j.ijhydene.2005.09.001
  21. Cheng, C., Zhang, H., Song, M., Wu, F., & Zhang, L. (2023). Research Regarding Molybdenum Flakes’ Improvement on the Hydrogen Storage Efficiency of MgH2. Metals, 13, 1-11; https://doi.org/10.3390/met13030631
  22. Cheng, Y., Bi, J., & Zhang, W. (2021). The Hydrogen Storage Properties of MgH2–Fe7S8 Composites. Materials Advances, 2, 736-742; 10.1039/d0ma00818d
  23. Croston, D.L., Grant, D.M., & Walker, G.S. (2010). The Catalytic Effect of Titanium Oxide Based Additives on the Dehydrogenation and Hydrogenation of Milled MgH2. Journal of Alloys and Compounds, 492(1–2), 251-258; https://doi.org/10.1016/j.jallcom.2009.10.19
  24. Cui, J., Liu, J., Wang, J., Ouyang, L., Sun, D., Zhu, M. & Yao, X. (2014). Mg–TM (TM: Ti, Nb, V, Co, Mo or Ni) Core–Shell Like Nanostructures: Synthesis, Hydrogen Storage Performance and Catalytic Mechanism. Journal of Materials Chemistry A, 2, 9645–9655; https://doi.org/10.1039/C4TA00221K
  25. Cui, J., Wang,, H., Liu, J., Ouyang, L., Zhang, Q., Sun, D., Yao, X., & Zhu, M. (2013). Remarkable Enhancement in Dehydrogenation of MgH2 by a Nano-Coating of Multi-Valence Ti-Based Catalysts. Journal of Materials Chemistry A, 1, 5603–5611; https://doi.org/10.1039/C3TA01332D
  26. Da- Conceição, M.O.T., Brum, M.C., & Dos Santos, D.S. (2014). The Effect of V, VCl3 and VC Catalysts on the MgH2 Hydrogen Sorption Properties. Journal of Alloys and Compounds, 586, S101–S104; https://doi.org/10.1016/j.jallcom.2012.12.131
  27. Dan, L., Hu, L., Wang, H., & Zhu, M. (2019). Excellent Catalysis of MoO3 on the Hydrogen Sorption of MgH2. International Journal of Hydrogen Energy, 44(55), 29249-29254; https://doi.org/10.1016/j.ijhydene.2019.01.285
  28. Dehouche, Z., Goyette, J., Bose, T.K., & Schulz, R. (2003). Moisture Effect on Hydrogen Storage Properties of Nanostructured MgH2–V–Ti Composite. International Journal of Hydrogen Energy, 28,(9), 983-988; https://doi.org/10.1016/S0360-3199(02)00196-9
  29. Dehouche, Z., Klassen, T., Oelerich, W., Goyette, J., Bose, T.K., & Schulz, R. (2002). Cycling and Thermal Stability of Nanostructured MgH2–Cr2O3 Composite for Hydrogen Storage. Journal of Alloys and Compounds, 347(12), 319-323; https://doi.org/10.1016/S0925-8388(02)00784-3
  30. Doğan, M., Sabaz, P., Bi̇ci̇l, B., Kizilduman, B.K.K., & Turhan, Y. (2020). Activated Carbon Synthesis from Tangerine Peel and its Use in Hydrogen Storage. Journal of the Energy Institute, 95(6), 2176-2185; https://doi.org/10.1016/j.joei.2020.05.011
  31. Dong, J., Wang, X., Xu, H., Zhao, Q., & Li, J. (2007). Hydrogen Storage in Several Microporous Zeolites. International Journal of Hydrogen Energy, 32, 4998 – 5004; https://doi.org/10.1016/j.ijhydene.2007.08.009
  32. Du, H., Liu, G., Da, Z., & Min, E. (1999). Synthesis, Characterization and Catalytic Properties of VS-2. Studies in Surface Science and Catalysis, 105, 741-746; https://doi.org/10.1016/S0167-2991(97)80624-6
  33. Du, X., Ding, Y., Song, F., Ma, B., Zhao, J., & Song, J. (2015). Efficient Photocatalytic Water Oxidation Catalyzed by Polyoxometalate [Fe11(H2O)14(OH)2(W3O10)2- (α-SbW9O33)6] 27- Based on Abundant Metals. Chemical Communications Journal, 51, 13925-13928; 10.1039/c5cc04551g
  34. Edalati, K., Uehiro, R., Ikeda, Y., Li, H.W., Emami, H., Filinchuk, Y., Arita , M., Sauvage, X., Tanaka, I., Akiba, E., & Horita, Z. (2018). Design and Synthesis of a Magnesium Alloy for Room Temperature Hydrogen Storage. Acta Materiala, 149, 88-96; https://doi.org/10.1016/j.actamat.2018.02.033
  35. Edwards, P.P., Kuznetsov, V.I., & David, W.T.F. (2007). Hydrogen Energy. Philosophical Transactions of the Royal Society A, 365, 1043–1056; https://doi.org/10.1098/rsta.2006.1965
  36. El-Eskandarany, M.S., Al-Ajmi, F., Banyan, M., & Al-Duweesh, A. (2019). Synergetic Effect of Reactive Ball Milling and Cold Pressing on Enhancing the Hydrogen Storage Behavior of Nanocomposite MgH2/10 wt% TiMn2 binary system. International Journal of Hydrogen Energy, 44(48), 6428-26443; https://doi.org/10.1016/j.ijhydene.2019.08.093
  37. Farha, O.K., Yazaydin , A.O., Eryazici, I., Malliakas, C.D., Hauser, B.G., Kanatzidis, M.G., Nguyen, S.T., Snurr, R.Q., & Hupp, J.T. (2010). De Novo Synthesis of a Metal–Organic Framework Material Featuring Ultrahigh Surface Area and Gas Storage Capacities. Nature Chemistry, 2, 944-948; https://doi.org/10.1038/nchem.834
  38. Filiz, B.C. (2021). Investigation of the Reaction Mechanism of the Hydrolysis of MgH2 in CoCl2 Solutions under Various Kinetic Conditions. Reaction Kinetics, Mechanisms and Catalysis, 132, 93-109; https://doi.org/10.1007/s11144-020-01923-4
  39. Friedrichs, O., Zinsou, F.A., Fernández, J.R.A., Sánchez-López, J.C., Justo, A., Klassen, T., Bormann, R., & Fernández, A. (2006). MgH2 with Nb2O5 as Additive, for Hydrogen Storage: Chemical, Structural and Kinetic Behavior with Heating. Acta Materialia, 54(1), 105-110; https://doi.org/10.1016/j.actamat.2005.08.024
  40. Fu, Y., Ding, Z., Ren, S., Li, X., Zhou, S., Zhang, L., Wang, W., Wu, L., Li, Y., & Han, S. (2020). Effect of In-Situ Formed Mg2Ni/Mg2NiH4 Compounds on Hydrogen Storage Performance of MgH2. International Journal of Hydrogen Energy, 45(52), 28154-28162; https://doi.org/10.1016/j.ijhydene.2020.03.089
  41. Furukawa, H., Ko, N., Go, Y.B., Aratani, N., Choi, S.B., Choi, E., Yazaydin, A.O., Snurr, R.Q., Keeffe, M.O., Kim, J., & Yaghi, O.M. (2010). Ultrahigh Porosity in Metal-Organic Frameworks. Science, 329, 424–428; 10.1126/science.1192160
  42. Gao, H., Liu, Y., Zhu, Y., Zhanhg, J., & Li, L. (2020). Catalytic Effect of Sandwich-Like Ti3C2/TiO2(A)-C on Hydrogen Storage Performance of MgH2. Nanotechnology, 31, 1-11; https://doi.org/10.1088/1361-6528/ab5979
  43. Gao, H., Shi, R., Zhu, J., Liu, Y., Shao, Y., Zhu, Y., Zhang, J., Li, L., & Hu, X. (2021). Interface Effect in Sandwich Like Ni/Ti3C2 Catalysts on Hydrogen Storage Performance of MgH2. Applied Surface Science, 564, 1-8; https://doi.org/10.1016/j.apsusc.2021.150302
  44. Gao, S., Wang, H., Wang, X., Liu, H., He, T., Wang, Y., Wu, C., Li, S., & Yan, M. (2020). MoSe2 Hollow Nanospheres Decorated with FeNi3 Nanoparticles for Enhancing the Hydrogen Storage Properties of MgH2. Journal of Alloys and Compounds, 830, 1-12; https://doi.org/10.1016/j.jallcom.2020.154631
  45. Gao, S., Wang, X., Liu, H., He, T., Wang, Y., Li, S., & Yan, M. (2019). Effects of Nano-Composites (FeB, FeB/CNTs) on Hydrogen Storage Properties of MgH2, Journal of Power Sources, 438, 227006; https://doi.org/10.1016/j.jpowsour.2019.227006
  46. Gao, S., Wang, X., Liu, H., He, T., Wang, Y., Li, S., & Yan, M. (2020). CNTs decorated with CoFeB as a Dopant to Remarkably Improve the Dehydrogenation/Rehydrogenation Performance and Cyclic Stability of MgH2. International Journal of Hydrogen Energy, 45(53), 28964-28973; https://doi.org/10.1016/j.ijhydene.2020.07.148
  47. Gattia, D.M., Jangir, M., & Jain, I.P. (2019). Study on Nanostructured MgH2 with Fe and its Oxides for Hydrogen Storage Applications. Journal of Alloys and Compounds, 801,188-191; https://doi.org/10.1016/j.jallcom.2019.06.067
  48. Han, Z., Zhou, S., Chen, H., Nu, H., & Wang, N. (2017). Enhancement of the Hydrogen Storage Properties of Mg/C Nanocomposites Prepared by Reactive Milling with Molybdenum. Journal of Wuhan University of Technology-Materials Science Edition, 299-304; 10.1007/s11595-017-1596-8
  49. Han, Z., Zhou, S., Wang, N., Zhang, Q., Zhang, T., & Ran, W. (2016). Crystal Structure and Hydrogen Storage Behaviors of Mg/MoS2 Composites from Ball Milling. Journal of Wuhan University of Technology-Materials Science Edition, 773-778; 10.1007/s11595-016-1444-2
  50. Hanada, N., Ichikawa, T., & Fujii, H. (2005). Catalytic Effect of Ni nano-Particle and Nb Oxide on H-Desorption Properties in MgH2 Prepared by Ball Milling. Journal of Alloys and Compounds, 404–406, 716-719; https://doi.org/10.1016/j.jallcom.2004.12.166
  51. Hao, S., & Sholl, D.S. (2012). Effect of TiH2 - Induced Strain on Thermodynamics of Hydrogen Release from MgH2. The Journal of Physical Chemistry C, 116, 2045-2050; dx.doi.org/10.1021/jp210573a
  52. Hirscher, M. & Panella, B. (2007). Hydrogen Storage in Metal–Organic Frameworks. Scripta Materialia, 56, 809-812; https://doi.org/10.1016/j.scriptamat.2007.01.005
  53. Hong, F., Fu, H., Shi, W., Zhao, R., Li, R., Fan, Y., Liu, Z., Ding, S., Liu, H., Zhou, W., Guo, J., & Lan, Z. (2023). Application of Nitrogen-Doped Graphene-Supported Titanium Monoxide as a Highly Active Catalytic Precursor to Improve the Hydrogen Storage Properties of MgH2. Journal of Alloys and Compounds, 960, 1-10; https://doi.org/10.1016/j.jallcom.2023.170727
  54. Hou, Q., Yang, X., & Zhang, J.(2021). Review on Hydrogen Storage Performance of MgH2; Development and Trends. Chemistry Europe, 1589-1606; https://doi.org/10.1002/slct.202004476
  55. Hu, C., Zheng, Z., Si, T., & Zhang, Q. (2022). Enhanced Hydrogen Desorption Kinetics and Cycle Durability of Amorphous TiMgVNi3-doped MgH2. International Journal of Hydrogen Energy, 7(6,), 3918-3926; https://doi.org/10.1016/j.ijhydene.2021.11.010
  56. Huang, T., Huang, X., Hu, C., Wang, J., Liu, H., Ma, Z., Zou, J., & Ding, W. (2021). Enhancing Hydrogen Storage Properties of MgH2 through Addition of Ni/CoMoO4 Nanorods. Materialstoday Energy, 19, 1-11; https://doi.org/10.1016/j.mtener.2020.100613
  57. Huang, Z., Xia, K., Zheng, L., Han, B., Gao, Q., Wang, H., Li, Z., & Zhou, Z. (2017). Facile and Scalable Synthesis of Hierarchically Porous Graphene Architecture for Hydrogen Storage and High-Rate Supercapacitors. Journal of Materials Science: Materials in Electronics, 28, 17675-17681; https://doi.org/10.1007/s10854-017-7705-9
  58. Huot, J., Pelletier, J.F., Lurio, L.B., Sutton, M., & Schulz, R. (2003). Investigation of Dehydrogenation Mechanism of MgH2–Nb Nanocomposites. Journal of Alloys and Compounds, 348(1-2), 319-324; https://doi.org/10.1016/S0925-8388(02)00839-3
  59. Ismail, M., Zhao, Y., Xuebin, Y., & Dou, S.X. (2012). Improved Hydrogen Storage Performance of MgH2 NaAlH4 Composite by Addition of TiF3. International Journal of Hydrogen Energy, 37(10), 8395-8401; https://doi.org/10.1016/j.ijhydene.2012.02.117
  60. Ismail, M., Zhao, Y., Xuebin, Y., Mao, J.F., & Dou, S.F. (2011). The Hydrogen Storage Properties and Reaction Mechanism of the MgH2–NaAlH4 Composite System. International Journal of Hydrogen Energy, 36(15), 9045-9050; https://doi.org/10.1016/j.ijhydene.2011.04.132
  61. Jia, Y., Han, S., Zhang, W., Zhao, X., Sun, P., Liu, Y., Shi, H., & Wang, J. (2013). Hydrogen Absorption and Desorption Kinetics of MgH2 Catalyzed by MoS2 and MoO2. International Journal of Hydrogen Energy, 38(5), 2352-2356; https://doi.org/10.1016/j.ijhydene.2012.12.018
  62. Jia, Y., Wang, X., Hu, L., Xiao, X., Zhang, S., He, J., Qi, J., Lv, L., Xu, F., Sun, L., & Chen, L. (2023). Carbon Composite Support Improving Catalytic Effect of NbC Manoparticles on the Low-Temperature Hydrogen Storage Performance of MgH2. Journal of Materials Science & Technology, 150, 65-74; https://doi.org/10.1016/j.jmst.2022.11.044
  63. Jiang, W., Wang, H., & Zhu, M. (2021). AlH3 as a Hydrogen Storage Material: Recent Advances, Prospects and Challenges. Rare Metals, 40, 3337–3356; https://doi.org/10.1007/s12598-021-01769-2
  64. Jiang, Y., Yu, Y., Wang, Z., Zhang, S., & Cao, J. (2023), CFD Simulation of Heat Transfer and Phase Change Characteristics of the Cryogenic Liquid Hydrogen Tank under Microgravity Conditions. International, Journal of Hydrogen Energy, 48(19), 7026-7037; https://doi.org/10.1016/j.ijhydene.2022.04.006
  65. Jin, S.A., Shim, J.H., Ahn, J.P., Cho, Y.W., & Yi, K.W. (2007b). Improvement in Hydrogen Sorption Kinetics of MgH2 with Nb Hydride Catalyst. Acta Materialia, 55(15), 5073-5079; https://doi.org/10.1016/j.actamat.2007.05.029
  66. Jin, S.A., Shim, J.H., Cho, Y.W., & Yi, K.W. (2007a). Dehydrogenation and Hydrogenation Characteristics of MgH2 with Transition Metal Fluorides. Journal of Power Sources, 172 (2), 25,859-862; https://doi.org/10.1016/j.jpowsour.2007.04.090
  67. Kadri, A., Jia, Y., Chen, Z., & Yao, X. (2015). Catalytically Enhanced Hydrogen Sorption in Mg-MgH2 by Coupling Vanadium-Based Catalyst and Carbon Nanotubes. Materials, 8, 3491-3507; https://doi.org/10.3390/ma8063491
  68. Konstas, K., Taylor, J.W., Thornton, A.W., Doherty, C.M., Lim, W.X., Bastow, T.J., Kennedy, D.F., Wood, C.D., Cox, B.J., Hill, J.M., Hill, A.J., & Hill, M.R. (2012). Lithiated Porous Aromatic Frameworks with Exceptional Gas Storage Capacity. Angewandte Chemie International Edition, 51, 6639 –6642; https://doi.org/10.1002/ange.201201381
  69. Krainz, G., Bartlok, G., Bodner, P., Casapicola, P., Doeller, C., Hofmeister, F., Neubacher, E., & Zieger, A. (2004), Development of Automotive Liquid Hydrogen Storage Systems. Advances in Cryogenic Engineering. Transactions of the Cryogenic Engineering Conference-CEC, 49, 35-40; https://doi.org/10.1063/1.1774664
  70. Krishna, R., Titus, E., Salimian, M., Okhay, O., Rajendran, S., Rajkumar, A., Sousa, J.M.G., Ferreira, A.L.C., Gil, J.C., & Gracio, J. (2012). Hydrogen Storage for Energy Application. INTECH, 243-266; https://doi.org/10.5772/51238
  71. Kumar, S., Jain, A., Yamaguchi, S., Miyaoka, H., Ichikawa, T., Mukherjee, A., Dey, G.K., & Kojima, Y. (2017). Surface Modification of MgH2 by ZrCl4 to Tailor the Reversible Hydrogen Storage Performance. International Journal of Hydrogen Energy, 42(9), 6152-6159; https://doi.org/10.1016/j.ijhydene.2017.01.193
  72. Kumar, S., Singh, P.K., Rao, G.v.S.N., Kojima, Y., & Kain, V. (2018). Synergic Effect of Vanadium Trichloride on the Reversible Hydrogen Storage Performance of the Mg-MgH2 System. International Journal of Hydrogen Energy, 43(32), 15330-15337; https://doi.org/10.1016/j.ijhydene.2018.06.063
  73. Lan, J., Cao, D., Wang, D., Ben, T., & Zhu, G.(2010). High-Capacity Hydrogen Storage in Porous Aromatic Frameworks with Diamond-Like Structure. Physical Chemistry Letters, 1, 978–981; https://doi.org/10.1021/jz900475b
  74. Lan, Z., Wen, X., Zeng, L., Luo, Z., Liang, H., Shi, W., Hong, F., Liu, H., Ning, H., Zhou, W., & Guo, J. (2022). In Situ Incorporation of Highly Dispersed Nickel and Vanadium Trioxide Nanoparticles in Nanoporous Carbon for the Hydrogen Storage Performance Enhancement of Magnesium Hydride. Chemical Engineering Journal, 446(3), 1-12; https://doi.org/10.1016/j.cej.2022.137261
  75. Langmi, H.W., Book, D., Walton, A., Johnson, S.R., Al-Mamouri, M.M., Speight, J.D., Edwards, P.P., Harris, I.R., & Anderson, P.A. (2005). Hydrogen Storage in Ion - Exchanged Zeolites. Journal of Alloys and Compounds, 404–406, 637–642; https://doi.org/10.1016/j.jallcom.2004.12.193
  76. Li, L., Jiang, G., Tian, H., & Wang, Y. (2017). Effect of the Hierarchical Co@C Nanoflowers on the Hydrogen Storage Properties of MgH2. International Journal of Hydrogen Energy, 42(47), 28464-28472; https://doi.org/10.1016/j.ijhydene.2017.09.160
  77. Li, P., Wan, Q., Li, Z., Zhai, F., Li, Y., Cui, L., Qu, X., & Qu, A.A. (2013). MgH2 Dehydrogenation Properties Improved by MnFe2O4 Nanoparticles. Journal of Power Sources, 239, 201-206; https://doi.org/10.1016/j.jpowsour.2013.03.096
  78. Li, X., Fu, Y., Xue, Y., Cong, L., Yu, H., Zhang, L. Li, Y., & Han, S. (2021). Effect of Ni/tubular g-C3N4 on Hydrogen Storage Properties of MgH2. International Energy of Hydrogen Energy, 46, 33186 - 33196; https://doi.org/10.1016/j.ijhydene.2021.07.166
  79. Li, Y., Hu, F., Luo, L., Xu, J., Zhao, Z., Zhang, Y., & Zhao, D. (2018). Hydrogen Storage of Casting MgTiNi Alloys. Catalysis Today, 318, 103-106; https://doi.org/10.1016/j.cattod.2017.10.046
  80. Liang, G., Huo, J., Boily, S., Neste, A.V., & Schulz, R. (1999). Hydrogen Storage Properties of the Mechanically Milled MgH –V2 Nanocomposite. Journal of Alloys and Compounds, 291, 295–299; https://doi.org/10.1016/S0925-8388(99)00268-6
  81. Liang, G., Huot, J., Boily, S., Neste, V., & Schulz, R. (2000). Hydrogen Storage in Mechanically Milled Mg–LaNi5 and MgH2 –LaNi5 Composites. Journal of Alloys and Compounds, 297, 261–265; https://doi.org/10.1016/S0925-8388(99)00592-7
  82. Liu, G., Wang, L., Hu, Y., Sun, C., Leng, H., Li, Q., & Wu, C. (2021). Enhanced Catalytic Effect of TiO2@rGO Synthesized by One-Pot Ethylene Glycol-Assisted Solvothermal Method for MgH2. Journal of Alloy and Compounds, 881, 1-10; https://doi.org/10.1016/j.jallcom.2021.160644
  83. Liu, H., Lu, C., Wang, X., Xu, Li., Huang,, X., Wang,, X. & Ning, H. (2021). Combinations of V2C and Ti3C2 MXenes for Boosting the Hydrogen Storage Performances of MgH2. ACS Applied Materials & Interfaces, 13235−13247; https://doi.org/10.1021/acsami.0c23150
  84. Liu, H., Sun, P., Bowman Jr., R.C., Fang, Z.Z., Liu, Y., & Zhou, C. (2020). Effects of Air Exposure on Hydrogen Storage Properties of Catalyzed Magnesium Hydride. Journal of Power Sources, 454, 1-10; https://doi.org/10.1016/j.jpowsour.2020.227936
  85. Liu, X., Zhang, C., Geng, Z., & Cai, M. (2014). High-Pressure Hydrogen Storage and Optimizing Fabrication of Corncob-Derived Activated Carbon. Microporous and Mesoporous Materials, 194, 60-65; https://doi.org/10.1016/j.micromeso.2014.04.005
  86. Liu, Y., Gao, H., Zhu, Y., Li, S., Zhang, J., & Li, L. (2019). Excellent catalytic Activity of a Two-Dimensional Nb4C3Tx (MXene) on Hydrogen Storage of MgH2. Applied Surface Science, 493, 431-440; https://doi.org/10.1016/j.apsusc.2019.07.037
  87. Lu, C., Liu, H., Xu, L., Luo, H., He, S., Duan, X., Huang, X., Wang, X., Lan, Z., & Guo, J. (2022). Two-Dimensional Vanadium Carbide for Simultaneously Tailoring the Hydrogen Sorption Thermodynamics and Kinetics of Magnesium Hydride. Journal of Magnesium and Alloys, 10(4),1051-1065; https://doi.org/10.1016/j.jma.2021.03.030
  88. Lu, J., Cho, Y.J., Fang, Z.Z., Sohn, H.Y., & Ro¨nnebro, E. (2009). Hydrogen Storage Properties of Nanosized MgH2-0.1TiH2 Prepared by Ultrahigh-Energy-High-Pressure Milling. Journal of the American Chemical Society, 131, 15843–15852; https://doi.org/10.1021/ja906340u
  89. Lu, X., Zhang, L., Zheng, J., & Yu, X. (2022). Construction of Carbon Eovered Mg2NiH4 Nanocrystalline for Hydrogen Storage. Journal of Alloys and Compounds, 905, 1-11; https://doi.org/10.1016/j.jallcom.2022.164169
  90. Lu, Y., Wang, H., Liu, J., Liuzhang, O., & Zhu, M. (2018). Destabilizing the Dehydriding Thermodynamics of MgH2 by Reversible Intermetallics Formation in Mg−Ag−Zn Ternary Alloys. Journal of Power Sources, 396 (31); 796-802; https://doi.org/10.1016/j.jpowsour.2018.06.060
  91. Lu, Z., He, J., Song, M., Zhang, Y., Wu, F., Zheng, J., Zhang, L., & Chen, L. (2023). Bullet like Vanadium-Based MOFs as a Highly Active Catalyst for Promoting the Hydrogen Storage Property in MgH2. International Journal of Minerals, Metallurgy and Material, 30(1), 44-53; https://doi.org/10.1007/s12613-021-2372-5
  92. Luo, W. (2004). (LiNH2–MgH2): A Viable Hydrogen Storage System. Journal of Alloys and Compounds, 381(1–2), 284-287; https://doi.org/10.1016/j.jallcom.2004.03.119
  93. Luo, Y., Wang, P., Ma, L.P., & Cheng, H.M. (2008). Hydrogen Sorption Kinetics of MgH2 Catalyzed with NbF5. Journal of Alloys and Compounds, 453(1-2), 138-142; https://doi.org/10.1016/j.jallcom.2006.11.113
  94. Ma, Z., Zhang, J., Zhu, Y., Lin, H., Lin, Y., Zhang, Y., Zhu, D., & Li, L. (2018). Facile Synthesis of Carbon Supported Nano-Ni Particles with Superior Catalytic Effect on Hydrogen Storage Kinetics of MgH2. ACS Applied Energy Materials, 1, 1158−1165; https://doi.org/10.1021/acsaem.7b00266
  95. Ma, Z., Zou, J., Khan, D., Zhu, W., Hu, C., Zeng, X., & Ding, W. (2019). Preparation and Hydrogen Storage Properties of MgH2-Trimesic Acid-TM MOF (TM=Co, Fe) Composites. Journal of Materials Science & Technology, 35(10), 2132-2143; https://doi.org/10.1016/j.jmst.2019.05.04
  96. Madina, V., & Azkarate, T. (2009), Compatibility of Materials with Hydrogen. Particular Case: Hydrogen Embrittlement of Titanium Alloys. International Journal of Hydrogen Energy, 34(14), 976-5980; https://doi.org/10.1016/j.ijhydene.2009.01.058
  97. Malahayati, Nurmalita, Ismail, Machmud, M.N., & Jalil, Z. (2021). Sorption Behavior of MgH2-Ti for Hydrogen Storage Material Prepared by High Pressure Milling. Journal of Physics: Conference Series, 1882, 1-5; 10.1088/1742-6596/1882/1/012005
  98. Malka, I.E., Bystrzycki, J., Plocinski, T., & Czujko, T. (2011). Microstructure and Hydrogen Storage Capacity of Magnesium Hydride with Zirconium and Niobium Fluoride Additives after Cyclic Loading. Journal of Alloys and Compounds, 509, S616-S620; https://doi.org/10.1016/j.jallcom.2010.10.122
  99. Mao, J., Guo, Z., Yu, X., Liu, H., Wu, Z., & Ni, J. (2010). Enhanced Hydrogen Sorption Properties of Ni and Co-Catalyzed MgH2. International Journal of Hydrogen Energy, 35(10), 4569-4575; https://doi.org/10.1016/j.ijhydene.2010.02.107
  100. Meng, Y., Ju, S., Chen, W., Chen, X., Xia, G., Sun, D., & Yu, X. (2022). Design of Bifunctional Nb/V Interfaces for Improving Reversible Hydrogen Storage Performance of MgH2. Small Structures, 3, 1-10; 10.1002/sstr.202200119
  101. Muthukumar P., Prakash, M.M., & Murthy, S.S. (2005). Experiments on a Metal Hydride Based Hydrogen Storage Device. International Journal of Hydrogen Energy, 30, 1569-1581; https://doi.org/10.1016/j.ijhydene.2004.12.007
  102. Nathaniel, L.R., Juergen, E., Mohamed, E., David, T.V.O., Keeffe, M., Kim, J., & Yaghi, O.M. (2003). Hydrogen Storage in Microporous Metal–Organic Frameworks. Science, 300, 1127–1129; 10.1126/science.1083440
  103. Nishihara, H., Hou, P.X., Li, L.X., Ito, M., Uchiyama, M., Kaburagi, T., Ikura, A., Katamura, J., Kawarada, T., Mizuuchi, K., & Kyotani, T. (2009). High-pressure Hydrogen Storage in Zeolite-Templated Carbon. The Journal of Physical Chemistry C, 113, 3189–3196; https://doi.org/10.1021/jp808890x
  104. Nyahuma, F.M., Zhang, L., Song, M., Lu, X., Xiao, B., Zheng, J., & Wu, F. (2022). Significantly Improved Hydrogen Storage Behaviors in MgH2 with Nb Nanocatalyst. International Journal of Minerals, Metallurgy and Materials, 29(9), 1789-1797; https://doi.org/10.1007/s12613-021-2303-5
  105. Oladunni, O.J., Mpofu, K., & Olanrewaju, O.A. (2022). Greenhouse Gas Emissions and its Driving Forces in the Transport Sector of South Africa. Energy Reports, 8, 2052-2061; https://doi.org/10.1016/j.egyr.2022.01.123
  106. Olubusoye, O.E., & Musa, D. (2020). Carbon Emissions and Economic Growth in Africa: Are they Related? Cogent Economics & Science, 8, 1-21; https://doi.org/10.1080/23322039.2020.1850400
  107. Patelli, N., Calizz, M., Migliori, A., Morandi, V., & Pasquini, L. (2017). Hydrogen Desorption Below 150 °C in MgH2−TiH2 Composite Nanoparticles: Equilibrium and Kinetic Properties. The Journal of Physical Chemistry C, 121, 11166−11177; https://doi.org/10.1021/acs.jpcc.7b03169
  108. Polanski, M., Bystrzycki, J., Varin, R.A., Plocinski , T., & Pisarek, M. (2011). The Effect of Chromium (III) Oxide (Cr2O3) Nanopowder on the Microstructure and Cyclic Hydrogen Storage Behavior of Magnesium Hydride (MgH2). Journal of Alloys and Compounds, 509(5), 2386-2391; https://doi.org/10.1016/j.jallcom.2010.11.026
  109. Porcu, M., Long, A.K.P., & Sykes, J.M. (2008). TEM Studies of Nb2O5 Catalyst in Ball-Milled MgH2 for Hydrogen Storage. Journal of Alloys and Compounds, 453(1-2), 341-346; https://doi.org/10.1016/j.jallcom.2006.11.147
  110. Prabhukhot, P.R. Wagh, M.M., & Gangal, A.C. (2016). A Review on Solid State Hydrogen Storage Material. Advances in Energy and Power, 4(2), 11–22; https://doi.org/10.13189/aep.2016.040202
  111. Pukazhselvan, D., Irurueta ,G.O., Pérez, J., Singh, B., Bdikin, I., Singh, M.J.K., & Fagg, D. P. (2016). Crystal Structure, Phase Stoichiometry and Chemical Environment of MgxNbyOx+y Nanoparticles and their Impact on Hydrogen storage in MgH2. International Journal of Hydrogen Energy, 41(27), 11709-11715; https://doi.org/10.1016/j.ijhydene.2016.04.029
  112. Pukazhselvan, D., Nasani, N., Correia, P., Argibay, E.C., rurueta, G.O., Stroppa, D.G., & Fagg, D.B. (2017a). Evolution of Reduced Ti Containing Phase(s) in MgH2/TiO2 System and its Effect on the Hydrogen Storage Behavior of MgH2. Journal of Power Sources, 362, 174-183; https://doi.org/10.1016/j.jpowsour.2017.07.032
  113. Pukazhselvan, D., Nasani, N., Sandhya, K.S., Singh, B., Bdikin, I., Koga, N., & Fagg, D.P. (2017b). Role of Chemical Interaction between MgH2 and TiO2 Additive on the Hydrogen Storage Behavior of MgH2. Applied Surface Science, 420, 740-745; https://doi.org/10.1016/j.apsusc.2017.05.182
  114. Pukazhselvan, D., Sandhya, K.S., Ramasamy, D., Shaula, A., & Fagg, D.P. (2020). Transformation of Metallic Ti to TiH2 Phase in the Ti/MgH2 Composite and Its Influence on the Hydrogen Storage Behavior of MgH2. ChemPhysChem, 21, 1-8; https://doi.org/10.1002/cphc.202000031
  115. Pukazhselvan, D., Silva, D.A.R., Sandhya, K.S., Fateixa, S.F., Shaula, A., Nogueira, H., Bdikin, I., & Fagg, D.P. (2022). Interaction of Zirconia with Magnesium Hydride and its Influence on the Hydrogen Storage Behavior of Magnesium Hydride. International Journal of Hydrogen Energy, 47(51), 21760-21771; https://doi.org/10.1016/j.ijhydene.2022.04.290
  116. Qiu, Y., Yang, H., Tong, L., & Wang, L. (2021). Research Progress for Cryogenic Materials for Storage and Transportation of Liquid Hydrogen. Metals, 11(1101), 1-13; https://doi.org/10.3390/met11071101
  117. Rahwanto, A., Ismail, I., Nurmalita, N., Mustanir,, & Jalil1, Z. (2021). Nanoscale Ni as a Catalyst in MgH2 for Hydrogen Storage Material. Journal of Physics: Conference Series, 1882, 1-5; doi: 10.1088/1742-6596/1882/1/012010
  118. Ranjbar, A., Guo, Z.P., Yu, X.B., Attard, D., Calka, A., & Liu, H.K. (2009b). Effects of SiC Nanoparticles with and without Ni on the Hydrogen Storage Properties of MgH2. International Journal of Hydrogen Energy, 34(17), 7263-7268; https://doi.org/10.1016/j.ijhydene.2009.07.005
  119. Ranjbar, A., Guo, Z.P., Yu, X.B., Wexler, D., Calka, A., Kim, C.J., & Liu, H.K. (2009a). Hydrogen Storage Properties of MgH2–SiC Composites
  120. Materials Chemistry and Physics, 114(1), 168-172; https://doi.org/10.1016/j.matchemphys.2008.09.001
  121. Ren, L., Zhu, W., Li, Y., Lin, X., Xu, H., Sun, F., Lu, C., & Zou, J. (2022). Oxygen Vacancy Rich 2D TiO2 Nanosheets: A Bridge Toward High Stability and Rapid Hydrogen Storage Kinetics of Nano Confned MgH2. Nano-Micro Letters, 14(114), 1-16; https://doi.org/10.1007/s40820-022-00891-9
  122. Rivoirard, S., De Rango, P., Fruchart, D., Charbonnier, J., & Vempaire, D. (2003). Catalytic Effect of Additives on the Hydrogen Absorption Properties of Nano-Crystalline MgH2(X) Composites. Journal of Alloys and Compounds 356–357, 622–625; https://doi.org/10.1016/S0925-8388(03)00145-2
  123. Ródena, N.A.L., Guo, Z.X., Zinsou, K.F.A. Amorós, D.C., & Solano, A.L. (2008). Effects of Different Carbon Materials on MgH2 Decomposition, Carbon, 46(1), 126-137; https://doi.org/10.1016/j.carbon.2007.10.033
  124. Rosi, N.L., Eckert, J., Eddaoudi, M., Vodak, D.T., Kim, J., Keeffe, M.O., & Yaghi, O.M. (2003). Hydrogen Storage in Microporous Metal-Organic Frameworks. Science, 300, 1127- 1129; https://doi.org/10.1126/science.1083440
  125. Santos, S.F., Ishikawa, T.T., Botta, W.J., & Huot, J. (2014). MgH2 + FeNb Nanocomposites for Hydrogen Storage. Materials Chemistry and Physics, 147(3), 557-562; https://doi.org/10.1016/j.matchemphys.2014.05.031
  126. Sazelee, N.A., Idris, N.H., Din, M.F.D., Mustafa, N.S., Ali, N.A., Yahya, M.S., Yap, F.A.H., Sulaiman, N.I.N., & Israel, M. (2018). Synthesis of BaFe12O19 by Solid State Method and its Effect on Hydrogen Storage Properties of MgH2. International Journal of Hydrogen Energy, 43(45), 20853-20860; https://doi.org/10.1016/j.ijhydene.2018.09.125
  127. Schimmel, H.G., Huot, H., Chapon, L.C., Tichelaa, F.D., & Mulder, F.M. (2005). Hydrogen Cycling of Niobium and Vanadium Catalyzed Nanostructured Magnesium. Journal of the American Chemical Society, 127, 14348-14354; https://doi.org/10.1021/ja051508a
  128. Sethia, G., & Sayar, A. (2016). Activated Carbon with Optimum Pore Size Distribution for Hydrogen Storage. Carbon, 99, 289 – 294; https://doi.org/10.1016/j.carbon.2015.12.032
  129. Setijadi, E.J., Li, X., Masters, A.F., Maschmeyer, T., & Zinsou, K.F.A. (2016).Delaminated MoS2 as a Structural and Functional Modifier for MgH2 – Better Hydrogen Desorption Kinetics through Induced Worm-Like Morphologies. International Journal of Hydrogen Energy, 41(5), 3551-3560; https://doi.org/10.1016/j.ijhydene.2015.12.161
  130. Shahi, R.R., Bhatanagar, A., Pandey, S.K., Shukla, V., Yadav, T.P., Shaz, M.A., & Srivastava, O.N. (2015). MgH2-ZrFe2Hx Nanocomposites for Improved Hydrogen Storage Characteristics of MgH2. International Journal of Hydrogen Energy, 40(35), 11506-11513; https://doi.org/10.1016/j.ijhydene.2015.03.162
  131. Shan, J., Li, P., Wan, Q., Zhai, F., Zhang, J., Li, Z., Liu, Z., Volinsky, A.A., & Qu, X. (2014). Significantly improved dehydrogenation of Ball-Milled MgH2 Doped with CoFe2O4 Nanoparticles. Journal of Power Sources, 268, 778-786; https://doi.org/10.1016/j.jpowsour.2014.06.116
  132. Shao, H., Felderhoff, M., & Schüth, F. (2011). Hydrogen Storage Properties of Nanostructured MgH2/TiH2 Composite Prepared by Ball Milling Under High Hydrogen Pressure. International Journal of Hydrogen Energy, 36(17), 10828-10833; https://doi.org/10.1016/j.ijhydene.2011.05.180
  133. Shao, H., Huang, Y., Guo, H., Liu, Y., Guo, Y., & Wang, Y. (2021). Thermally Stable Ni MOF Catalyzed MgH2 for Hydrogen Storage. International Journal of Hydrogen Energy, 46(76), 37977-37985; https://doi.org/10.1016/j.ijhydene.2021.09.045
  134. Shao, Y., Gao, H., Tang, Q., Liu, Y., Liu, J., Zhu, Y., Zhang, J., Li, L., Hu, X., & Ba, Z. (2022). Ultra-fine TiO2 Nanoparticles Supported on Three-Dimensionally Ordered Nacroporous Structure for Improving the Hydrogen Storage Performance of MgH2. Applied Surface Science, 585, 1-10; https://doi.org/10.1016/j.apsusc.2022.152561
  135. Shigemura, M., Lecuona, E., & Sznajder, J.I. (2017). Effects of Hypercapnia on the Lung. The Journal of Physiology, 595(8), 2431–2437; https://doi.org/10.1113/JP273781
  136. Singh, G., Bahadur, .R., Lee, M., Kim, I.Y., Ruban, A.M., Davidraj, J.M., Semit, D., Karakoti, A., Al Muhtaseb, A.H., & Al Vinu, A. (2021). Nanoporous Activated Biocarbons with High Surface Areas from Alligator Weed and their Excellent Performance for CO2 Capture at both Low and High Pressures. Chemical Engineering Journal, 406, 1-11; https://doi.org/10.1016/j.cej.2020.126787
  137. Song, M., Zhang, L., Yao, Z., Zheng,, J., Shang,, D., Chen, L. & Li, H. (2022). Unraveling the Degradation Mechanism for the Hydrogen Storage Property of Fe Nanocatalyst-Modified MgH2. Inorganic Chemistry Frontiers, 9, 3874–3884; https://doi.org/10.1039/d2qi00863g
  138. Soni, P.K., Bhatnagar, A., & Shaz, M.A. (2023). Enhanced Hydrogen Properties of MgH2 by Fe Nanoparticles Loaded Hollow Carbon Spheres. International Journal of Hydrogen Energy, 48(47), 17970-17982; https://doi.org/10.1016/j.ijhydene.2023.01.278
  139. Stephen, F.L. (2005), Fossil Fuels in the 21st Century, Ambio, 34(8), 621–627; https://www.jstor.org/stable/4315666
  140. Taghizadeh-hesary, F., Rasoulinezhad, E., Yoshino, N., Chang, Y., Taghizadeh-hesary, F., & Morgan, P. (2021). The Energy–Pollution–Health Nexus: A Panel Data Analysis of Low- and Middle-Income Asian Countries. The Singapore Economic Review, 66(2), 435-455; https://doi.org/10.1142/S0217590820430043
  141. Takeichi, N., Senoh, H., Yokota, T., Tsuruta, H., Tsuruta, H., Hamada, K., Takeshita, H.T., Tanaka, H., Kiyobayashi, T., Takano, T., & Kuriyama, N.(2003). Hybrid Hydrogen Storage Vessel, a Novel High-Pressure Hydrogen Storage Vessel Combined with Hydrogen Storage Material. International Journal of Hydrogen Energy, 2(10), 1121-1129; https://doi.org/10.1016/S0360-3199(02)00216-1
  142. Tian, G., Wu, F., Zhang, H., Wei, J., Zhao, H., & Zhang, L. (2023). Boosting the Hydrogen
  143. Storage Performance of MgH2 by Vanadium Based Complex Oxides. Journal of Physics and Chemistry of Solids, 174, 1-9; https://doi.org/10.1016/j.jpcs.2022.111187
  144. Tan, M., & Shang, C. (2012). Effect of TiC and Mo2C on Hydrogen Desorption of Mechanically Milled MgH2. Journal of Chemical Science and Technology, 1(2), 54-59
  145. Tan, X.H., Zahiri, B., Holt, C.M.B., Kubis, A., & Mitlin, D. (2010). A TEM Based Study of the Microstructure During Room Temperature and Low Temperature Hydrogen Storage Cycling in MgH2 Promoted by Nb–V. Acta Materialia, 60(16), 5646-5661; https://doi.org/10.1016/j.actamat.2012.06.009
  146. Thongtan, P., Dansirima, P., Thiangviriya, S., Thaweelap, N., Plerdsranoy, P., & Utke, R. (2018). Reversible Hydrogen Sorption and Kinetics of Hydrogen Storage Tank Based on MgH2 modified by TiF4 and Activated carbon. International Journal of Hydrogen, 22, 12260-12270; https://doi.org/10.1016/j.ijhydene.2018.04.171
  147. Ud-Din, R., Xuanhui, Q., Zahid, G.H., Asghar, Z., Shahzad, M., Iqbal, M., & Ahmad, E. (2014). Improved Hydrogen Storage Performances of MgH2–NaAlH4 System Catalyzed by TiO2 Nanoparticles. Journal of Alloys and Compounds, 604(15), 317-324; https://doi.org/10.1016/j.jallcom.2014.03.150
  148. United States Environmental Protection Agency. https://www.epa.gov/ghgemissions/overview-greenhouse-gases (Cited May 20, 2023)
  149. Van der Werf, G.R., Morton, D.C., DeFries, R.S., Olivier, J.G., Kasibhatla, P.S., Jacson, R.B., Collatz, G.J., & Randerson, J.T. (2009) CO2 Emissions from Forest Loss, Nature Gesccience, 2, 737-738; https://doi.org/10.1038/ngeo671
  150. Verma, S.K., Shaz, M.A., & Yadav, T.P. (2023). Enhanced Hydrogen Absorption and Desorption Properties of MgH2 with Graphene and Vanadium Disulfide. International Journal of Hydrogen Energy, 48(56), 21383-21394; https://doi.org/10.1016/j.ijhydene.2021.12.269
  151. Wang, A., Ren,, Z., Jian, N., Gao, M., Hu, J., Du, F., Pan, H., & Liu, Y. (2018). Vanadium Oxide nanoparticles Supported on Cubic Carbon Nanoboxes as Highly Active Catalyst Precursors for Hydrogen Storage in MgH2. Journal of Materials Chemistry A, 6, 16177–16185; https://doi.org/10.1039/C8TA05437A
  152. Wang, H., Geo, Q., & Hu, J. (2009). High Hydrogen Storage Capacity of Porous Carbons Prepared by using Activated Carbon, Journal of the American Chemical Society, 131, 7016–7022; https://doi.org/10.1021/ja8083225
  153. Wrobel-Iwaniec, I., Díez, N., & Gryglewicz, G. (2015), Chitosan-Based Highly Activated Carbons for Hydrogen Storage. International Journal of Hydrogen Energy, 40(17), 5788-5796; https://doi.org/10.1016/j.ijhydene.2015.03.034
  154. Wronski, Z.S., Carpenter, G.J.C., Czujko, T., & Varin, R.A. (2011). A New Nanonickel Catalyst for Hydrogen Storage in Solid-State Magnesium Hydrides. International Journal of Hydrogen Energy, 36(1), 1159-1166; https://doi.org/10.1016/j.ijhydene.2010.06.089
  155. Xu, G., Shen, N., Chen, L., Chen, Y., & Zhang, W. (2017). Effect of BiVO4 Additive on the Hydrogen Storage Properties of MgH2. Materials Research Bulletin, 89, 197-203; https://doi.org/10.1016/j.materresbull.2017.01.036
  156. Yang, J., Cai, W., Ma, M., Li, L., Liu, C., Ma, X., Li, L., & Chen, X. (2020). Driving Forces for China’s CO2 Emissions from Energy Consumption Based on Kanya-LMDI Methods. Science of The Total Environment, 711, 1-15; https://doi.org/10.1016/j.scitotenv.2019.134569
  157. Yang, Z., Xia, Y., & Mokaya, Y. (2007). Enhanced Hydrogen Storage Capacity of High Surface Area Zeolite-Like Carbon Materials. Journal American Chemical Society, 129, 1673-1679; https://doi.org/10.1021/ja067149g
  158. Yanya, M.S., & Ismail, M. (2018). Synergistic Catalytic Effect of SrTiO3 and Ni on the Hydrogen Storage Properties of MgH2. International Journal of Hydrogen Energy, 43(12), 6244-6255; https://doi.org/10.1016/j.ijhydene.2018.02.028
  159. Yahya, M.S., Sulaiman, N.N., Mustafa, N.S., Yap, F.A.H., & Ismail, M. (2018). Improvement of Hydrogen Storage Properties in MgH2 Catalysed by K2NbF7. International Journal of Hydrogen Energy, 43(31), 14532-14540; https://doi.org/10.1016/j.ijhydene.2018.05.157
  160. Yao, G., Jiang, Y., Liu, Y., Wu, C., Chao, K.C., Lyu, C., & Li, Q. (2020). Catalytic Effect of Ni@rGO on the Hydrogen Storage Properties of MgH2. Journal of Magnesium and Alloys, 8, 461-471; https://doi.org/10.1016/j.jma.2019.06.006
  161. Yavari, A.R., LeMoulec, A., De- Castro, F.R., Deledda, S., Friedrichs, O., Botta, W.J., Vaughan, V.G., Klassen, T., Fernandez, A., & Kvick, A. (2005). Improvement in H-Sorption Kinetics of MgH2 Powders by Using Fe Nanoparticles Generated by Reactive FeF3 Addition. Scripta Materialia, 52(8), 719-724. https://doi.org/10.1016/j.scriptamat.2004.12.020
  162. Yu, T.C., Lin, C.C., Chen, C.C., Lee, W.L., Lee, R.G., Tseng, G.H., & Liu, S.P.(2013). Wireless Sensor Networks for Indoor Air Quality Monitoring. Medical Engineering & Physics, 35(2), 231-235; https://doi.org/10.1016/j.medengphy.2011.10.011
  163. Yu, X., Yang, Z.X., Liu, H.K., Grant, D.M., & Walker, G.S. (2010). The Effect of a Ti-V-based BCC Alloy as a Catalyst on the Hydrogen Storage Properties of MgH2. International Journal of Hydrogen Energy, 35(12), 6338-6344; https://doi.org/10.1016/j.ijhydene.2010.03.089
  164. Yu, Z., Zhang, W., Zhang, Y., Fu, Y., Cheng, Y., Guo, S., Li, Y. & Han, S. (2023). Remarkable Kinetics of Novel Ni@CeO2–MgH2 Hydrogen Storage Composite. International Journal of Hydrogen Energy, 47(83), 35352-35364; https://doi.org/10.1016/j.ijhydene.2022.08.121
  165. Yuan, W., Li, B., & Li, L. (2011). A Green Synthetic Approach to Graphene Nanosheets for Hydrogen Adsorption. Applied Surface Science, 257, 10183-10187; https://doi.org/10.1016/j.apsusc.2011.07.015
  166. Zahiri,, B., Danaie, M., Tan, X., Amirkhiz, B.S., Botton, C.A., & Mitlin, D. (2011). Stable Hydrogen Storage Cycling in Magnesium Hydride, in the Range of Room Temperature to 300 oC, Achieved Using a New Bimetallic Cr-V Nanoscale Catalyst. The Journal of Physical Chemistry C, 116, 3188–3199; https://.doi.org/10.1021/jp211254k
  167. Zaluski, L., Zaluska, A., & Olsen, J.O.S .(1995a). Hydrogen Absorption in Manocrystalline Mg2Ni Formed by Mechanical Alloying. Journal of Alloys and Compounds, 217(2), 245-249; https://doi.org/10.1016/0925-8388(94)01348-9
  168. Zaluski, L., Zaluska, A., Tessier, P., Olsen, J.O.S., & Schulz, R. (1995b). Catalytic Effect of Pd on Hydrogen Absorption in Mechanically Alloyed Mg2Ni, LaNi5 and FeTi. Journal of Alloys and Compounds, 217(2), 295-300; https://doi.org/10.1016/0925-8388(94)01358-6
  169. Zhang, F., Zhao, P., Niu, M., & Maddy, J. (2016).The Survey of Key Technologies in Hydrogen Energy Storage. International Journal of Hydrogen Energy, 41(33), 14535–14552; https://doi.org/10.1016/j.ijhydene.2016.05.293
  170. Zhang, J., He, L., Yao, Y., Zhou, X.J., Yu, L.P., & Zhou, D.W. (2020). Catalytic Effect and Mechanism of NiCu Solid Solutions on Hydrogen Storage Properties of MgH2. Renewable Energy, 154, 1229-1239; https://doi.org/10.1016/j.renene.2020.03.089
  171. Zhang, J., Hou, Q., Guo, X., & Yang, X. (2022c). Achieve High-Efficiency Hydrogen Storage of MgH2 Catalyzed by Nanosheets CoMoO4 and rGO. Journal of Alloys and Compounds, 911, 1-13; https://doi.org/10.1016/j.jallcom.2022.165153
  172. Zhang, J., Li, L., Chen, R., Xu, P., & Kai, F. (2008). High Pressure Steel Storage Vessels Used in Hydrogen Refueling Station, Journal of Pressure Vessel Technology, 130, 1-3; https://doi.org/10.1115/1.2826453
  173. Zheng, J., Liu, X., Xu, P., Liu, P., Zhao, Y., & Yang, J. (2012). Development of High Pressure Gaseous Hydrogen Storage Technologies. International Journal of Hydrogen Energy, 37(1), 1048–1057; https://doi.org/10.1016/j.ijhydene.2011.02.125
  174. Zhang, L., Ji, L., Yao, Z., Yan, N., Sun, Z., Yang, X., Zhu, X., Hu, S. & Chen, L. (2019). Facile synthesized Fe Nanosheets as Superior Active Catalyst for Hydrogen Storage in MgH2. International Journal of Hydrogen Energy, 44(39), 21955-21964; https://doi.org/10.1016/j.ijhydene.2019.06.065
  175. Zhang, L., Nyahuma, F.M., Zhang, H., Cheng, C., Zheng, J., Wu, F., & Chen, L. (2023). Metal Organic Framework Supported Niobium Pentoxide Nanoparticles with Exceptional Catalytic Effect on Hydrogen Storage Behavior of MgH2. Green Energy & Environment, 88(2), 589-600; https://doi.org/10.1016/j.gee.2021.09.004
  176. Zhang, L., Xia, X., Xu, C., Zheng, J., Fan, X., Shao, J., Li, S., Ge, H., Wang, Q., & Chen, L. (2015). Remarkably Improved Hydrogen Storage Performance of MgH2 Catalyzed by Multivalence NbHx Nanoparticles. The Journal of Physical Chemistry C, 119, 8554−8562; https://doi.org/10.1021/acs.jpcc.5b01532
  177. Zhang, L., Yu, H., Lu, Z., Zhao, C., Zheng, J., Wei, T., Wu, F., & Xiao, B. (2022b). The Effect of Different Co Phase Structure (FCC/HCP) on the Catalytic Action towards the Hydrogen Storage Performance of MgH2. Chinese Journal of Chemical Engineering, 43, 343-352; https://doi.org/10.1016/j.cjche.2021.10.016
  178. Zhang, T., Hou, X., Hu, R., Kou, H., & Li, J. (2016). Non-isothermal Synergetic Catalytic Effect of TiF3 and Nb2O5 on Dehydrogenation High-Energy Ball Milled MgH2. Materials Chemistry and Physics, 183, 65-75; https://doi.org/10.1016/j.matchemphys.2016.08.002
  179. Zhang, W., Xu, G., Cheng, Y., Chen, L., Huo, Q., & Liu, S. (2018). Improved Hydrogen Storage Properties of MgH2 by the Addition of FeS2 Micro-spheres. Dalton Transactions, 47, 5217–5225; https://doi.org/10.1039/c7dt04665k
  180. Zhang, X., Wang, K., Zhang, X., Hu, J., Gao, M., Pan1, H., & Liu, Y. (2020). Synthesis Process and Catalytic Activity of Nb2O5 Hollow Spheres for Reversible Hydrogen Storage of MgH2. International Journal of Energy Research, 3129-3141; https://doi.org/10.1002/er.6006
  181. Zhang, Y., Tian, Q.F., Liu, S.S., & Sun, L.X. (2008).The Destabilization Mechanism and De/re-hydrogenation Kinetics of MgH2–LiAlH4 Hydrogen Storage System. Journal of Power Sources, 185(2), 1514-1518; https://doi.org/10.1016/j.jpowsour.2008.09.054
  182. Zhang, Y., Zheng. J., Lu, Z., Song, M., He, J., Wu, F., & Zhang, L. (2022a). Boosting the Hydrogen Storage Performance of Magnesium Hydride with Metal Organic Framework-Derived Cobalt@Nickel Oxide Bimetallic Catalyst. Chinese Journal of Chemical Engineering, 52, 161-171; https://doi.org/10.1016/j.cjche.2022.06.026
  183. Zhao, Y., Zhu, Y., Liu, J., Ma, Z., Zhang, J., Liu, Y., Li, Y., & Li, L. (2021). Enhancing Hydrogen Storage Properties of MgH2 by Core-Shell CoNi@C. Journal of Alloys and Compounds, 862, 1-8; https://doi.org/10.1016/j.jallcom.2020.158004
  184. Zidan, R. (2010). Aluminum Hydride (Alane). Handbook of Hydrogen Storage: New Materials for Future Energy Storage. Wiley-VCH Verlag GmbH & Co. KgaA Chapter 9, 249-277

Last update:

No citation recorded.

Last update: 2025-01-19 18:33:37

No citation recorded.