Layer by Layer Composite Membranes of Alginate-Chitosan Crosslinked by Glutaraldehyde in Pervaporation Dehydration of Ethanol

Nur Rokhati -  Universitas Diponegoro, Indonesia
Titik Istirokhatun -  Universitas Diponegoro, Indonesia
*Asep Muhamad Samsudin -  Universitas Diponegoro, Indonesia
Published: 15 Jul 2016.
Open Access Copyright (c) 2016 International Journal of Renewable Energy Development

Hydrophilicity of membrane causing only water can pass through membrane. Pervaporation process using organophilic membrane has been offered as alternative for ethanol dehydration. This paper investigate pervaporation based biopolymer composite membrane from alginate-chitosan using layer by layer method prepared by glutaraldehyde as crosslinking agent and polyethersulfone (PES) as supported membrane. Characterization of crosslinked of composite membrane by FTIR helped in identification of sites for interaction between layers of membrane and support layer (PES). The SEM showed a multilayer structure and a distinct interface between the chitosan layer, the sodium alginate layer and the support layer. The coating sequence of membranes had an obvious influence on the pervaporation dehydration performance of membranes. For the dehydration of 95 wt% ethanol-water mixtures, a good performance of PES-chitosan-alginate-chitosan (PES/Chi/Alg/Chi) composite membrane was found in the pervaporation dehydration of ethanol.


Article History: Received April 12nd , 2016; Received in revised form June 25th , 2016; Accepted July 1st , 2016; Available online

How to Cite This Article: Rokhati, N., Istirokhatun, T. and Samsudin, A.M. (2016) Layer by Layer Composite Membranes of Alginate-Chitosan Crosslinked by Glutaraldehyde in Pervaporation Dehydration of Ethanol. Int. Journal of Renewable Energy Development, 5(2), 101-106.


Other format:

alginate; chitosan; composite membrane; layer by layer; ethanol dehydration

Article Metrics:

Article Info
Section: Original Research Article
Language: EN
Full Text:
Statistics: 896 958
  1. Arvanitoyannis, I., Biliaderis, C.G., Ogawa, H., Kawasaki, N., 1998. Biodegradable films made from low-density polyethylene (LDPE), rice starch and potato starch for food packaging applications: Part 1. Carbohydr. Polym. 36, 89–104. doi:10.1016/S0144-8617(98)00016-2
  2. Chen, S., Liu, M., Jin, S., Chen, Y., 2005. Synthesis and swelling properties of pH-sensitive hydrogels based on chitosan and poly(methacrylic acid) semi-interpenetrating polymer network. J. Appl. Polym. Sci. 98, 1720–1726.
  3. Galus, S., Turska, A., Lenart, A., 2012. Sorption and wetting properties of pectin edible films. Czech J. Food Sci. 30, 446–455.
  4. Ghazali, M., Hassan, H., 2003. Pervaporation separation of isopropanol-water mixtures using crosslinked chitosan membranes. J. Teknol. 39, 55–64. doi:10.1016/j.memsci.2005.03.051
  5. Huang, R.Y.., Pal, R., Moon, G.., 2000. Pervaporation dehydration of aqueous ethanol and isopropanol mixtures through alginate/chitosan two ply composite membranes supported by poly(vinylidene fluoride) porous membrane. J. Memb. Sci. 167, 275–289. doi:10.1016/S0376-7388(99)00293-8
  6. Kampeerapappun, P., Aht-ong, D., Pentrakoon, D., Srikulkit, K., 2007. Preparation of cassava starch/montmorillonite composite film. Carbohydr. Polym. 67, 155–163. doi:10.1016/j.carbpol.2006.05.012
  7. Kanti, P., Srigowri, K., Madhuri, J., Smitha, B., Sridhar, S., 2004. Dehydration of ethanol through blend membranes of chitosan and sodium alginate by pervaporation. Sep. Purif. Technol. 40, 259–266. doi:10.1016/j.seppur.2004.03.003
  8. Kumar, M.N.V.R., Muzzarelli, R.A.A., Muzzarelli, C., 2004. Chitosan chemistry and pharmaceutical perspectives. Chem. Rev. 104.
  9. Maizura, M., Fazilah, A., Norziah, M.H., Karim, a. a., 2008. Antibacterial activity of modified sago starch-alginate based edible film incorporated with lemongrass (Cymbopogon citratus) oil. Int. Food Res. J. 15, 233–236.
  10. Mochizuki, A., Amiya, S., Sato, Y., Ogawara, H., Yamashita, S., 1990. Pervaporation separation of water/ethanol mixtures through polysaccharide membranes. IV. The relationships between the permselectivity of alginic acid membrane and its solid state structure. J. Appl. Polym. Sci. 40, 385–400.
  11. Mulder, M., 1996. Basic Principles of Membrane Technology, 2nd ed. Kluwer Academic Publisher, Dordrecht.
  12. Shi, Y., Wang, X., Chen, G., 1996. Pervaporation characteristics and solution-diffusion behaviors through sodium alginate dense membrane. J. Appl. Polym. Sci. 61, 1387–1394.
  13. Stuart, B.., 2004. infrared spectroscopy : fundamental and application (analytical Techniques in the science (AnTs). John Wiley and Sons Ltd, Chichester.
  14. Tan, S.H., Ahmad, A.L., 2002. Performance of Chitosan Membranes Crosslinked with Glutaraldehyde in Pervaporation Separation. AJSTD 19, 69–83.
  15. Yeom, C., Lee, K., 1998. Characterization of sodium alginate membrane crosslinked with glutaraldehyde in pervaporation separation. J. Appl. Polym. Sci. 67, 209–219. doi:10.1002/(SICI)1097-4628(19980110)67:2<209::AID-APP3>3.0.CO;2-Y
  16. Zhang, S., Drioli, E., 1995. Pervaporation Membranes. Sep. Sci. Technol. 30, 1–31. doi:10.1080/01496399508012211