skip to main content

Layer by Layer Composite Membranes of Alginate-Chitosan Crosslinked by Glutaraldehyde in Pervaporation Dehydration of Ethanol

Universitas Diponegoro, Indonesia

Published: 15 Jul 2016.
Editor(s): P.V. Aravind
Open Access Copyright (c) 2016 International Journal of Renewable Energy Development

Citation Format:

Hydrophilicity of membrane causing only water can pass through membrane. Pervaporation process using organophilic membrane has been offered as alternative for ethanol dehydration. This paper investigate pervaporation based biopolymer composite membrane from alginate-chitosan using layer by layer method prepared by glutaraldehyde as crosslinking agent and polyethersulfone (PES) as supported membrane. Characterization of crosslinked of composite membrane by FTIR helped in identification of sites for interaction between layers of membrane and support layer (PES). The SEM showed a multilayer structure and a distinct interface between the chitosan layer, the sodium alginate layer and the support layer. The coating sequence of membranes had an obvious influence on the pervaporation dehydration performance of membranes. For the dehydration of 95 wt% ethanol-water mixtures, a good performance of PES-chitosan-alginate-chitosan (PES/Chi/Alg/Chi) composite membrane was found in the pervaporation dehydration of ethanol.


Article History: Received April 12nd , 2016; Received in revised form June 25th , 2016; Accepted July 1st , 2016; Available online

How to Cite This Article: Rokhati, N., Istirokhatun, T. and Samsudin, A.M. (2016) Layer by Layer Composite Membranes of Alginate-Chitosan Crosslinked by Glutaraldehyde in Pervaporation Dehydration of Ethanol. Int. Journal of Renewable Energy Development, 5(2), 101-106.


Fulltext View|Download
Keywords: alginate; chitosan; composite membrane; layer by layer; ethanol dehydration
Funding: BOPTN Diponegoro University 2014

Article Metrics:

  1. Arvanitoyannis, I., Biliaderis, C.G., Ogawa, H., Kawasaki, N., 1998. Biodegradable films made from low-density polyethylene (LDPE), rice starch and potato starch for food packaging applications: Part 1. Carbohydr. Polym. 36, 89–104. doi: 10.1016/S0144-8617(98)00016-2
  2. Chen, S., Liu, M., Jin, S., Chen, Y., 2005. Synthesis and swelling properties of pH-sensitive hydrogels based on chitosan and poly(methacrylic acid) semi-interpenetrating polymer network. J. Appl. Polym. Sci. 98, 1720–1726
  3. Galus, S., Turska, A., Lenart, A., 2012. Sorption and wetting properties of pectin edible films. Czech J. Food Sci. 30, 446–455
  4. Ghazali, M., Hassan, H., 2003. Pervaporation separation of isopropanol-water mixtures using crosslinked chitosan membranes. J. Teknol. 39, 55–64. doi: 10.1016/j.memsci.2005.03.051
  5. Huang, R.Y.., Pal, R., Moon, G.., 2000. Pervaporation dehydration of aqueous ethanol and isopropanol mixtures through alginate/chitosan two ply composite membranes supported by poly(vinylidene fluoride) porous membrane. J. Memb. Sci. 167, 275–289. doi: 10.1016/S0376-7388(99)00293-8
  6. Kampeerapappun, P., Aht-ong, D., Pentrakoon, D., Srikulkit, K., 2007. Preparation of cassava starch/montmorillonite composite film. Carbohydr. Polym. 67, 155–163. doi: 10.1016/j.carbpol.2006.05.012
  7. Kanti, P., Srigowri, K., Madhuri, J., Smitha, B., Sridhar, S., 2004. Dehydration of ethanol through blend membranes of chitosan and sodium alginate by pervaporation. Sep. Purif. Technol. 40, 259–266. doi: 10.1016/j.seppur.2004.03.003
  8. Kumar, M.N.V.R., Muzzarelli, R.A.A., Muzzarelli, C., 2004. Chitosan chemistry and pharmaceutical perspectives. Chem. Rev. 104
  9. Maizura, M., Fazilah, A., Norziah, M.H., Karim, a. a., 2008. Antibacterial activity of modified sago starch-alginate based edible film incorporated with lemongrass (Cymbopogon citratus) oil. Int. Food Res. J. 15, 233–236
  10. Mochizuki, A., Amiya, S., Sato, Y., Ogawara, H., Yamashita, S., 1990. Pervaporation separation of water/ethanol mixtures through polysaccharide membranes. IV. The relationships between the permselectivity of alginic acid membrane and its solid state structure. J. Appl. Polym. Sci. 40, 385–400
  11. Mulder, M., 1996. Basic Principles of Membrane Technology, 2nd ed. Kluwer Academic Publisher, Dordrecht
  12. Shi, Y., Wang, X., Chen, G., 1996. Pervaporation characteristics and solution-diffusion behaviors through sodium alginate dense membrane. J. Appl. Polym. Sci. 61, 1387–1394
  13. Stuart, B.., 2004. infrared spectroscopy : fundamental and application (analytical Techniques in the science (AnTs). John Wiley and Sons Ltd, Chichester
  14. Tan, S.H., Ahmad, A.L., 2002. Performance of Chitosan Membranes Crosslinked with Glutaraldehyde in Pervaporation Separation. AJSTD 19, 69–83
  15. Yeom, C., Lee, K., 1998. Characterization of sodium alginate membrane crosslinked with glutaraldehyde in pervaporation separation. J. Appl. Polym. Sci. 67, 209–219. doi: 10.1002/(SICI)1097-4628(19980110)67:2<209::AID-APP3>3.0.CO;2-Y
  16. Zhang, S., Drioli, E., 1995. Pervaporation Membranes. Sep. Sci. Technol. 30, 1–31. doi: 10.1080/01496399508012211

Last update:

  1. From the functionalization of polyelectrolytes to the development of a versatile approach to the synthesis of polyelectrolyte multilayer films with enhanced stability

    Thi-Thanh-Tam Nguyen, Sabrina Belbekhouche, Pierre Dubot, Benjamin Carbonnier, Daniel Grande. Journal of Materials Chemistry A, 5 (46), 2017. doi: 10.1039/C7TA06855G
  2. pH-responsive chitosan/alginate polyelectrolyte complex membranes reinforced by tripolyphosphate

    Magdalena Gierszewska, Jadwiga Ostrowska-Czubenko, Ewelina Chrzanowska. European Polymer Journal, 101 , 2018. doi: 10.1016/j.eurpolymj.2018.02.031
  3. Control of organic and biological fouling of polyethersulfone membrane by blending and surface modification using natural additives

    Ria Desiriani, Titik Istirokhatun, Ralph Rolly Gonzales, Heru Susanto, Nita Aryanti, Herlambang Abriyanto, Hideto Matsuyama. Journal of Water Process Engineering, 55 , 2023. doi: 10.1016/j.jwpe.2023.104244
  4. Tannery Effluent Treatment by Nanofiltration, Reverse Osmosis and Chitosan Modified Membranes

    Asmaa Zakmout, Fatma Sadi, Carla A. M. Portugal, João G. Crespo, Svetlozar Velizarov. Membranes, 10 (12), 2020. doi: 10.3390/membranes10120378
  5. Recent advances in sodium alginate‐based membranes for dehydration of aqueous ethanol through pervaporation

    Mehwish Ehsan, Humaira Razzaq, Shumaila Razzaque, Aasma Bibi, Azra Yaqub. Journal of Polymer Science, 60 (16), 2022. doi: 10.1002/pol.20220190
  6. Multilayer UF membrane assisted by photocatalytic NZVI@TiO2 nanoparticle for removal and reduction of hexavalent chromium

    Maryamossadat Kazemi, Majid Peyravi, Mohsen Jahanshahi. Journal of Water Process Engineering, 37 , 2020. doi: 10.1016/j.jwpe.2020.101183
  7. Eco-Friendly OSN Membranes Based on Alginate Salts with Variable Nanofiltration Properties

    Evgenia Dmitrieva, Alisa Raeva, Daria Razlataya, Tatyana Anokhina. Membranes, 13 (2), 2023. doi: 10.3390/membranes13020244
  8. Synthesis and Optimization of Chitosan Ceramic-Supported Membranes in Pervaporation Ethanol Dehydration

    Mahdi Nikbakht Fini, Sepideh Soroush, Mohammad Montazer-Rahmati. Membranes, 8 (4), 2018. doi: 10.3390/membranes8040119
  9. Layer-by-Layer Assembled Multilayer Composite Membrane from Chitosan/Sodium Alginate for Pervaporation Dehydration of Binary and Ternary Systems of Ethyl Acetate, Ethanol and Water

    Yue Li, Yu Zhang, Meng Shi, Muhammad Yaseen, Min Fu, Yun Zou, Zhangfa Tong. SSRN Electronic Journal , 2022. doi: 10.2139/ssrn.4047560
  10. The alginate–chitosan composite sponges with biogenic Ag nanoparticles produced by combining of cryostructuration, ionotropic gelation and ion replacement methods

    Mariia G. Gordienko, Vera V. Palchikova, Sergei V. Kalenov, Evgeniy A. Lebedev, Alexei A. Belov, Natalia V. Menshutina. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020. doi: 10.1080/00914037.2020.1798439
  11. Controlled allylation of polyelectrolytes: a deep insight into chemical aspects and their applicability as building blocks for robust multilayer coatings

    Thi-Thanh-Tam Nguyen, Sabrina Belbekhouche, Rémi Auvergne, Benjamin Carbonnier, Daniel Grande. Pure and Applied Chemistry, 91 (6), 2019. doi: 10.1515/pac-2018-1104

Last update: 2024-06-22 23:54:21

No citation recorded.