skip to main content

Estimasi Nilai Hydraulic dan Solid Loading Rate Tipe Pengendapan Diskrit dan Flok Pada Proses Lumpur Aktif Untuk Pengolahan Limbah Cair Industri Kertas

Departemen Teknik Sipil dan Lingkungan, Fakultas Teknologi Pertanian, Institut Pertanian Bogor, Gedung FATETA, Kampus IPB Dramaga, Bogor, Jawa Barat, 16680, Indonesia

Received: 5 Jan 2022; Revised: 11 Feb 2022; Accepted: 21 Feb 2022; Available online: 27 Feb 2022; Published: 5 Jul 2022.
Editor(s): H. Hadiyanto

Citation Format:
Abstract

Beban limbah cair industri kertas meningkat seiring dengan peningkatan produksi kertas di Indonesia. Konsentrasi COD berkisar antara 8.300–45.384 mg/L O2 dan TSS sebesar 41.000 mg/L. Salah satu upaya untuk mengurangi beban COD dan TSS di dalam limbah cair industri kertas adalah dengan memanfaatkan proses lumpur aktif. Penelitian ini difokuskan pada pengaruh proses sedimentasi di dalam unit lumpur aktif untuk mereduksi COD dan TSS. Penelitian ini juga mencakup analisis dua tipe pengendapan, yaitu pengendapan partikel diskrit dan pengendapan flok. Tujuan utama penelitian ini untuk mengestimasi nilai hydraulic loading rate dan solid loading rate serta rekomendasi dimensi unit sedimentasi lumpur aktif. Penelitian ini meliputi kegiatan monitoring kinerja proses dengan tiga variasi waktu detensi (HRT). Beberapa variabel yang diperhatikan untuk mencapai tujuan penelitian ini, antara lain kecepatan pengendapan bebas (v), percepatan gravitasi (g), massa jenis partikel (ρs), massa jenis fluida (ρ), diameter partikel (d), dan koefisien penarikan atau drag coefficient (Cd). Pengukuran reduksi COD mengacu pada SNI 6989.2:2009 dan pengukuran reduksi TS mengacu pada SNI 06-6989.26-2005. Penelitian ini menunjukkan bahwa kecepatan pengendapan discrete particle settling tergantung pada karakteristik satuan partikel berdasarkan diameter partikel. Kecepatan pengendapan flocculant settling tergantung pada pengaruh interaksi partikel dalam pembentukan flok atau gumpalan beberapa entitas partikel. Jika ditinjau dari nilai umur lumpur (SLR), HRT 8 jam dan HRT 12 jam menunjukkan kondisi under loaded pada unit sedimentasi. Sementara itu, nilai HLR dan SLR pada HRT 6 jam telah memenuhi rentang kriteria desain lumpur aktif. Dengan demikian, desain terbaik untuk unit sedimentasi sekunder lumpur aktif, yaitu HRT 6 jam dengan HLR sebesar 42,16 m3/m2hari, SLR sebesar 102,45 kg/m2hari dan rata-rata reduksi padatan total mencapai 89,26%.

ABSTRACT

The influence of paper production affect simultenously to the increase of pulp and paper wastewater in Indonesia. The COD concentration ranged from 8,300–45,384 mg/L O2 and TSS was 41,000 mg/L. Reducing COD and TSS concentrations in the paper industry wastewater is to utilize by using activated sludge processes. This research was focused on the effect of sedimentation process in activated sludge to reduce COD and TSS. This research also included the analysis of two types of deposition, namely discrete particle settling and floc settling. Main objective this research was directed at determining the value of the hydraulic loading rate and solid loading rate as well as recommendations for the dimensions of the activated sludge sedimentation unit. This research included monitoring of process performance with three variations of detention time (HRT). There were several variables that are considered to achieve the objectives of this study, including free deposition velocity (v), acceleration due to gravity (g), particle density (ρs), fluid density (ρ), particle diameter (d), and drag coefficient. coefficient (Cd). The COD and TS reduction measurement refered to SNI 6989.2:2009 and SNI 06-6989.26-2005, respectively. This study showed that the speed of discrete particle settling depends on the characteristics of the particle unit as seen from the particle diameter. The deposition rate of flocculant settling depends on the effect of particle interactions in the formation of flocs or agglomerates of several particle entities. When viewed from the SLR value obtained, the 8-hour HRT and 12-hour HRT indicated that the sedimentation unit was in an under-loaded condition. Meanwhile, the HLR and SLR values at HRT 6 hours complied the activated sludge design criteria. Thus, the best design for the activated sludge secondary sedimentation unit was HRT 6 hours with an HLR of 42,16 m3/m2day, an SLR of 102,45 kg/m2day and an average total solids reduction of 89,26%.

Fulltext View|Download
Keywords: Hydraulic loading rate; lumpur aktif; pengendapan diskrit; pengendapan flok; solid loading rate; waktu detensi.

Article Metrics:

  1. Amanatidou E, Samiotis G, Trikoilidou E, Pekridis G, Taousanidis N. 2015. Evaluating sedimentation problems in activated sludge treatment plants operating at complete sludge retention time. Water Res..doi: 10.1016/j.watres.2014.10.061
  2. Assadi A, Alimoradzadeh R, Movahedyan H, Amin MM. 2020. Intensified 4-chlorophenol biodegradation in an aerobic sequencing batch reactor: Microbial and kinetic properties evaluation. Environ. Technol. Innov..doi: 10.1016/j.eti.2020.101243
  3. Chen W, Zheng H, Guan Q, Teng H, Zhao Chuanliang, Zhao Chun. 2016. Fabricating a Flocculant with Controllable Cationic Microblock Structure: Characterization and Sludge Conditioning Behavior Evaluation. Ind. Eng. Chem. Res..doi: 10.1021/acs.iecr.5b04207
  4. Chhuon R, Shahid MK, Kim S, Choi Y. 2020. Mill scale as a ballasted flocculant for enhancing the settleability of activated sludge. J. Environ. Chem. Eng..doi: 10.1016/j.jece.2020.104237
  5. Curtin K, Steve D, Fitzpatrick B, Meyer P. 2011. Biological Nutrient Removal. Volume ke-4
  6. Fathiyah N, Pin TG, Saraswati R. 2017. Pola Spasial dan Temporal Total Suspended Solid ( TSS ) dengan Citra SPOT di Estuari Cimandiri , Jawa Barat. Ind. Res. Work. Natl. Semin.(1):518–526
  7. Harms G, Layton AC, Dionisi HM, Gregory IR, Garrett VM, Hawkins SA, Robinson KG, Sayler GS. 2003. Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ. Sci. Technol..doi: 10.1021/es0257164
  8. Jargensen SE, editor. 1979. Chapter 1 Sedimentation. Di dalam: Studies in Environmental Science. Vol. 5. Elsevier. hlm. 1–7
  9. Kishore N, Gu S. 2010. Wall effects on flow and drag phenomena of spheroid particles at moderate Reynolds numbers. Ind. Eng. Chem. Res..doi: 10.1021/ie1011189
  10. Klidi N, Proietto F, Vicari F, Galia A, Ammar S, Gadri A, Scialdone O. 2019. Electrochemical treatment of paper mill wastewater by electro-Fenton process. J. Electroanal. Chem. 841(April):166–171.doi: 10.1016/j.jelechem.2019.04.022
  11. Lee CC, Lin SD. 2007. Handbook of Environmental Engineering Calculations , 2 nd edition
  12. Mohammed TJ, Shakir E. 2018. Effect of settling time, velocity gradient, and camp number on turbidity removal for oilfield produced water. Egypt. J. Pet..doi: 10.1016/j.ejpe.2016.12.006
  13. Novoa AF, Fortunato L, Rehman ZU, Leiknes TO. 2020. Evaluating the effect of hydraulic retention time on fouling development and biomass characteristics in an algal membrane photobioreactor treating a secondary wastewater effluent. Bioresour. Technol..doi: 10.1016/j.biortech.2020.123348
  14. Qasim SR, Zhu G. 2017. Wastewater treatment and reuse: Theory and design examples: Volume 1: Principles and basic treatment
  15. Rosidi M, Razif M. 2017. Perancangan Instalasi Pengolahan Air Limbah (IPAL) Industri Kertas Halus. J. Tek. ITS. 6(1):1–4.doi: 10.12962/j23373539.v6i1.21802
  16. Saleh MA, Eziefula AU, Abubakar H, Cynthia OO. 2015. Analysis of Type II Settlement in Water (Flocculent Particles). Int. J. Eng. Mod. Technol. 1(8):16–26
  17. Samal K, Dash RR. 2021. Modelling of pollutants removal in Integrated Vermifilter (IVmF) using response surface methodology. Clean. Eng. Technol..doi: 10.1016/j.clet.2021.100060
  18. Sarah M. 2005. PROSES REDUKSI EKSES LUMPUR AKTIF DARI IPAL INDUSTRI PEMBUATAN KERTAS. J. Sist. Tek. Ind. 6(3):1–216
  19. Verma S, Prasad B, Mishra IM. 2011. Thermochemical treatment (thermolysis) of petrochemical wastewater: COD removal mechanism and floc formation. Ind. Eng. Chem. Res..doi: 10.1021/ie102576w
  20. Wu HJ, Bevan MA. 2005. Direct measurement of single and ensemble average particle-surface potential energy profiles. Langmuir..doi: 10.1021/la047892r
  21. Wulandari F. 2007. STRUKTUR DAN KINERJA INDUSTRI KERTAS DAN PULP DI INDONESIA : SEBELUM DAN PASCAKRISIS. 8(2)
  22. Zhou H, Wei C, Zhang F, Hu Y, Wu H, Kraslawski A. 2018. Energy Balance Evaluation in Coking Wastewater Treatment: Optimization and Modeling of Integrated Biological and Adsorption Treatment System. ACS Sustain. Chem. Eng..doi: 10.1021/acssuschemeng.8b03535

Last update:

No citation recorded.

Last update: 2024-11-13 04:33:12

No citation recorded.