skip to main content

Penilaian Status dan Risiko Ekologi Cemaran Logam Berat di Lahan Pertanian Kota Malang, Provinsi Jawa Timur

Pusat Riset Hortikultura dan Perkebunan, Organisasi Riset Pertanian dan Pangan, Badan Riset dan Inovasi Nasional, Indonesia

Received: 2 Dec 2022; Revised: 26 Jul 2023; Accepted: 21 Sep 2023; Available online: 16 Nov 2023; Published: 10 Dec 2023.
Editor(s): Budi Warsito

Citation Format:
Abstract
Akumulasi logam berat pada tanah memberikan dampak yang besar bagi lingkungan seperti dapat mengganggu keseimbangan ekologi, mengurangi kesuburan tanah, mengubah kualitas fisikokimia tanah dan sangat berbahaya bagi kesehatan manusia. Penelitian ini bertujuan untuk menganalisis status logam berat pada tanah dan kemungkinan terjadinya dampak ekologi yang tidak diinginkan pada lingkungan akibat adanya cemaran logam berat pada lahan pertanian Kapaten Malang. Penelitian ini menggunakan metode survey pengambilan contoh tanah dengan jumlah titik lokasi pengambilan contoh tanah sebanyak 123 titik. Analisis yang dilakukan antara lain analisis spasial, geoaccumulation index (I-Geo), polltuion index (PI), the Nemerow integrated pollution index (NIPI), dan potential ecological risk index (RI). Hasil dari penelitian ini menunjukkan bahwa logam Pb, Cd, Co, Ni, Cr, Cu, Mn, Zn dan As terdeteksi hampir di semua lokasi pengambilan contoh tanah pada lahan pertanian Kota Malang. Hasil analisis geoaccumulation index (I-geo), pollution index (PI), the Nemerow integrated pollution index (NIPI)  dan potential ecological risk index (RI) menunjukkan hasil yang selaras bahwa logam Cd merupakan sumber utama pencemaran logam berat di lahan pertanian Kota Malang dengan nilai pencemaran yang cukup tinggi sehingga juga memiliki dampak ekologis yang tinggi.
Fulltext View|Download
Keywords: Logam berat; Pertanian; Risiko ekologi; Tanah

Article Metrics:

  1. Agyeman, P. C., Khosravi, V., Michael Kebonye, N., John, K., Borůvka, L., & Vašát, R. 2022. Using spectral indices and terrain attribute datasets and their combination in the prediction of cadmium content in agricultural soil. Computers and Electronics in Agriculture, 198, 107077. https://doi.org/10.1016/j.compag.2022.107077
  2. Ali, M. M., Rahman, S., Islam, M. S., Rakib, M. R. J., Hossen, S., Rahman, M. Z., Kormoker, T., Idris, A. M., & Phoungthong, K. 2022. Distribution of heavy metals in water and sediment of an urban river in a developing country: A probabilistic risk assessment. International Journal of Sediment Research, 37(2), 173–187. https://doi.org/10.1016/j.ijsrc.2021.09.002
  3. Alloway, B. J. 1995. Heavy metal in soils. Blackie Academic and Profesional
  4. BPS Kota Malang. 2021. Kota Malang Dalam Angka Tahun 2021. Badan Pusat Statistik Kota Malang
  5. Carne, G., Leconte, S., Sirot, V., Breysse, N., Badot, P.-M., Bispo, A., Deportes, I. Z., Dumat, C., Rivière, G., & Crépet, A. 2021. Mass balance approach to assess the impact of cadmium decrease in mineral phosphate fertilizers on health risk: The case-study of French agricultural soils. Science of The Total Environment, 760, 143374. https://doi.org/10.1016/j.scitotenv.2020.143374
  6. Chen, J., Zhang, H., Xue, J., Yuan, L., Yao, W., & Wu, H. 2022. Study on spatial distribution, potential sources and ecological risk of heavy metals in the surface water and sediments at Shanghai Port, China. Marine Pollution Bulletin, 181, 113923. https://doi.org/10.1016/j.marpolbul.2022.113923
  7. Defarge, N., Spiroux de Vendômois, J., & Séralini, G. E. 2018. Toxicity of formulants and heavy metals in glyphosate-based herbicides and other pesticides. Toxicology Reports, 5, 156–163. https://doi.org/10.1016/j.toxrep.2017.12.025
  8. Elango, D., Devi, K. D., Jeyabalakrishnan, H. K., Rajendran, K., Thoomatti Haridass, V. K., Dharmaraj, D., Charuchandran, C. V., Wang, W., Fakude, M., Mishra, R., Vembu, K., & Wang, X. 2022. Agronomic, breeding, and biotechnological interventions to mitigate heavy metal toxicity problems in agriculture. Journal of Agriculture and Food Research, 10, 100374. https://doi.org/10.1016/j.jafr.2022.100374
  9. Eviati, & Sulaeman. 2009. Petunjuk Teknis Edisi 2 Analisis Kimia Tanah, Tanaman, Air, dan Pupuk (2nd ed.). Balai Penelitian Tanah
  10. Hakanson, L. 1980. An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14 (8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8
  11. Lee, N.-W., Wang, H.-Y., Du, C.-L., Yuan, T.-H., Chen, C.-Y., Yu, C.-J., & Chan, C.-C. 2022. Air-polluted environmental heavy metal exposure increase lung cancer incidence and mortality: A population-based longitudinal cohort study. Science of The Total Environment, 810, 152186. https://doi.org/10.1016/j.scitotenv.2021.152186
  12. Li, F., Yang, H., Ayyamperumal, R., & Liu, Y. 2022. Pollution, sources, and human health risk assessment of heavy metals in urban areas around industrialization and urbanization-Northwest China. Chemosphere, 308, 136396. https://doi.org/10.1016/j.chemosphere.2022.136396
  13. Li, Q., Deng, Q., Fang, H., Yu, X., Fan, Z., Du, Z., Li, M., Tao, Q., Song, W., Zhao, B., Chen, C., Huang, R., Yuan, D., Gao, X., Li, B., Wang, C., & Wilson, J. P. 2022. Factors affecting cadmium accumulation in the soil profiles in an urban agricultural area. Science of The Total Environment, 807, 151027. https://doi.org/10.1016/j.scitotenv.2021.151027
  14. Liao, S., Jin, G., Khan, M. A., Zhu, Y., Duan, L., Luo, W., Jia, J., Zhong, B., Ma, J., Ye, Z., & Liu, D. 2021. The quantitative source apportionment of heavy metals in peri-urban agricultural soils with UNMIX and input fluxes analysis. Environmental Technology & Innovation, 21, 101232. https://doi.org/10.1016/j.eti.2020.101232
  15. Liu, H., Zhang, Y., Yang, J., Wang, H., Li, Y., Shi, Y., Li, D., Holm, P. E., Ou, Q., & Hu, W. 2021. Quantitative source apportionment, risk assessment and distribution of heavy metals in agricultural soils from southern Shandong Peninsula of China. Science of the Total Environment, 10
  16. Mariyanto, M., Amir, M. F., Utama, W., Hamdan, A. M., Bijaksana, S., Pratama, A., Yunginger, R., & Sudarningsih, S. 2019. Heavy metal contents and magnetic properties of surface sediments in volcanic and tropical environment from Brantas River, Jawa Timur Province, Indonesia. Science of The Total Environment, 675, 632–641. https://doi.org/10.1016/j.scitotenv.2019.04.244
  17. Matyakubov, B., Hwang, Y., & Lee, T.-J. 2022. Evaluating interactive toxic impact of heavy metals and variations of microbial community during fermentative hydrogen production. International Journal of Hydrogen Energy, 47(73), 31223–31240. https://doi.org/10.1016/j.ijhydene.2022.07.038
  18. Muller, G. 1969. Index of geoaccumulation in sediments of the Rhine river. Geojournal, 2, 109–118
  19. Naz, M., Dai, Z., Hussain, S., Tariq, M., Danish, S., Khan, I. U., Qi, S., & Du, D. (2022). The soil pH and heavy metals revealed their impact on soil microbial community. Journal of Environmental Management, 321, 115770. https://doi.org/10.1016/j.jenvman.2022.115770
  20. Nemerow, N. (1974). Scientific Stream Pollution Analysis. Scripta Book Co
  21. Patle, A., Kurrey, R., Deb, M. K., Patle, T. K., Sinha, D., & Shrivas, K. 2022. Analytical approaches on some selected toxic heavy metals in the environment and their socio-environmental impacts: A meticulous review. Journal of the Indian Chemical Society, 99(9), 100545. https://doi.org/10.1016/j.jics.2022.100545
  22. Pourret, O., & Bollinger, J.-C. 2018. “Heavy metal” - What to do now: To use or not to use? Science of The Total Environment, 610–611, 419–420. https://doi.org/10.1016/j.scitotenv.2017.08.043
  23. Schaefer, H. R., Flannery, B. M., Crosby, L., Jones-Dominic, O. E., Punzalan, C., & Middleton, K. 2022. A systematic review of adverse health effects associated with oral cadmium exposure. Regulatory Toxicology and Pharmacology, 134, 105243. https://doi.org/10.1016/j.yrtph.2022.105243
  24. Shuaib, M., Azam, N., Bahadur, S., Romman, M., Yu, Q., & Xuexiu, C. 2021. Variation and succession of microbial communities under the conditions of persistent heavy metal and their survival mechanism. Microbial Pathogenesis, 150, 104713. https://doi.org/10.1016/j.micpath.2020.104713
  25. Singh, P., Purakayastha, T. J., Mitra, S., Bhowmik, A., & Tsang, D. C. W. 2020. River water irrigation with heavy metal load influences soil biological activities and risk factors. Journal of Environmental Management, 270, 110517. https://doi.org/10.1016/j.jenvman.2020.110517
  26. Sisay, B., Debebe, E., Meresa, A., & Abera, T. 2019. Analysis of cadmium and lead using atomic absorption spectrophotometer in roadside soils of Jimma town. Journal of Analytical & Pharmaceutical Research, 8(4), 144–147. https://doi.org/10.15406/japlr.2019.08.00329
  27. Song, Y., Kang, L., Lin, F., Sun, N., Aizezi, A., Yang, Z., & Wu, X. 2022. Estimating the spatial distribution of soil heavy metals in oil mining area using air quality data. Atmospheric Environment, 287, 119274. https://doi.org/10.1016/j.atmosenv.2022.119274
  28. Tian, K., Li, M., Hu, W., Fan, Y., Huang, B., & Zhao, Y. 2022. Environmental capacity of heavy metals in intensive agricultural soils: Insights from geochemical baselines and source apportionment. Science of The Total Environment, 819, 153078. https://doi.org/10.1016/j.scitotenv.2022.153078
  29. Wedepohl, K. H. 1986. Chapter 5: The Composition of the Continental Crust. International Geophysics, 34(C), 213–241. https://doi.org/10.1016/S0074-6142(09)60137-6
  30. Wu, Q., Hu, W., Wang, H., Liu, P., Wang, X., & Huang, B. 2021. Spatial distribution, ecological risk and sources of heavy metals in soils from a typical economic development area, Southeastern China. Science of The Total Environment, 780, 146557. https://doi.org/10.1016/j.scitotenv.2021.146557
  31. Xiang, Y., Li, C., Hao, H., Tong, Y., Chen, W., Zhao, G., & Liu, Y. 2021. Performances of biodegradable polymer composites with functions of nutrient slow-release and water retention in simulating heavy metal contaminated soil: Biodegradability and nutrient release characteristics. Journal of Cleaner Production, 294, 126278. https://doi.org/10.1016/j.jclepro.2021.126278
  32. Yang, J., Wang, J., Liao, X., Tao, H., & Li, Y. 2022. Chain modeling for the biogeochemical nexus of cadmium in soil–rice–human health system. Environment International, 167, 107424. https://doi.org/10.1016/j.envint.2022.107424
  33. Yang, L., Meng, F., Ma, C., & Hou, D. 2022. Elucidating the spatial determinants of heavy metals pollution in different agricultural soils using geographically weighted regression. Science of The Total Environment, 853, 158628. https://doi.org/10.1016/j.scitotenv.2022.158628
  34. Yuan, X., Xue, N., & Han, Z. 2021. A meta-analysis of heavy metals pollution in farmland and urban soils in China over the past 20 years. Journal of Environmental Sciences, 101, 217–226. https://doi.org/10.1016/j.jes.2020.08.013
  35. Zhang, B., Jia, T., Peng, S., Yu, X., & She, D. 2022. Spatial distribution, source identification, and risk assessment of heavy metals in the cultivated soil of the Qinghai–Tibet Plateau region: Case study on Huzhu County. Global Ecology and Conservation, 35, e02073. https://doi.org/10.1016/j.gecco.2022.e02073
  36. Zhuang, Z., Mu, H., Fu, P., Wan, Y., Yu, Y., Wang, Q., & Li, H. 2020. Accumulation of potentially toxic elements in agricultural soil and scenario analysis of cadmium inputs by fertilization: A case study in Quzhou county. Journal of Environmental Management, 269, 110797. https://doi.org/10.1016/j.jenvman.2020.110797

Last update:

No citation recorded.

Last update: 2024-07-04 05:29:12

No citation recorded.