skip to main content

Technical, Economic, and Environmental Review of Waste to Energy Technologies from Municipal Solid Waste

Department of Chemical Engineering, Universitas Ahmad Dahlan Jl. Ringroad Selatan, Kragilan, Tamanan, Banguntapan, Bantul, Daerah Istimewa Yogyakarta, Indonesia 55191, Indonesia

Received: 21 Dec 2022; Revised: 12 Mar 2023; Accepted: 8 Apr 2023; Available online: 2 Jul 2023; Published: 2 Jul 2023.
Editor(s): Budi Warsito

Citation Format:
Abstract

Global municipal solid waste production and electricity demand gradually increased as a result of urbanization, population increase, and economic growth. The appropriate selection of Waste to energy (WTE) technologies needs consideration of energy efficiency, financial, and environmental aspects. This article discusses the technical, financial, and environmental side of existing WTE technologies. Waste-to-energy (WTE) technologies include thermal, physical, biochemical, and bio-electrochemical technology. Pyrolysis, gasification, and incineration are thermal technology used to generate energy from waste in the form of heat and syn-gas. Anaerobic digestion and landfill are biochemical technology to to generate energy from waste in the form of biogas. Physical technology is used to to generate energy from waste in the form of refuse-derived fuel (RDF). Microbial fuel cells (MFC) and microbial electrolysis cells (MEC) are the most recent WTE technology that produces electricity and hydrogen fuel. The results of the assessment of existing technology show that anaerobic digestion and landfill are low-cost WTE technology but have a low potential for energy generation. Plasma gasification is WTE technology with a high potential for energy generation, cold gas efficiency (CGE), carbon conversion efficiency (CCE), and H2/CO ratio, low CO2 emissions, and high operating costs. MEC has a high H2-potential for energy generation, low CO2 emissions, and the highest capital cost. Incineration is a common conversion technology with a low potential for energy generation, high CO2 emissions, and high capital costs. The selection of WTE technologies is influenced by technical, economic, and environmental factors. 

Note: This article has supplementary file(s).

Fulltext View|Download |  Requirement file
Hasil cek plagiarisme
Subject
Type Requirement file
  Download (3MB)    Indexing metadata
Keywords: Municipal solid waste; Energy; Technical; Economic; Environmental

Article Metrics:

  1. Aich, A., & Ghosh, S. K. (2016). Application of SWOT Analysis for the Selection of Technology for Processing and Disposal of MSW. Procedia Environmental Sciences, 35, 209–228. https://doi.org/10.1016/j.proenv.2016.07.083
  2. Alam, O., & Qiao, X. (2020). An in-depth review on municipal solid waste management, treatment and disposal in Bangladesh. Sustainable Cities and Society, 52(August 2019), 101775. https://doi.org/10.1016/j.scs.2019.101775
  3. Amend, J. P., & Shock, E. L. (2001). Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiology Reviews, 25(2), 175–243. https://doi.org/10.1016/S0168-6445(00)00062-0
  4. Austin, J. S. (2013). 11 - Air quality equipment and systems for waste to energy (WTE) conversion plants. In N. B. Klinghoffer & M. J. B. T.-W. to E. C. T. Castaldi (Eds.), Woodhead Publishing Series in Energy (pp. 204–226). Woodhead Publishing. https://doi.org/https://doi.org/10.1533/9780857096364.3.204
  5. Azam, M., Jahromy, S. S., Raza, W., Raza, N., Lee, S. S., Kim, K. H., & Winter, F. (2020). Status, characterization, and potential utilization of municipal solid waste as renewable energy source: Lahore case study in Pakistan. Environment International, 134(November 2019), 105291. https://doi.org/10.1016/j.envint.2019.105291
  6. Beyene, H. D., Werkneh, A. A., & Ambaye, T. G. (2018). Current updates on waste to energy (WtE) technologies: a review. Renewable Energy Focus, 24(March), 1–11. https://doi.org/10.1016/j.ref.2017.11.001
  7. Bharathiraja, B., Sudharsana, T., Jayamuthunagai, J., Praveenkumar, R., Chozhavendhan, S., & Iyyappan, J. (2018). Biogas production – A review on composition, fuel properties, feed stock and principles of anaerobic digestion. Renewable and Sustainable Energy Reviews, 90(August 2017), 570–582. https://doi.org/10.1016/j.rser.2018.03.093
  8. Cao, Y., Fu, L., & Mofrad, A. (2019). Combined-gasification of biomass and municipal solid waste in a fluidized bed gasifier. Journal of the Energy Institute, 92(6), 1683–1688. https://doi.org/10.1016/j.joei.2019.01.006
  9. Caroline Ducharme, Themelis, N. J., & Castaldi, M. J. (2010). Technical and economic analysis of Plasma-assisted Waste-to-Energy processes. September, 1–75. http://www.seas.columbia.edu/earth/wtert/sofos/ducharme_thesis.pdf
  10. Chen, C., Jin, Y. Q., Yan, J. H., & Chi, Y. (2013). Simulation of municipal solid waste gasification in two different types of fixed bed reactors. Fuel, 103, 58–63. https://doi.org/10.1016/j.fuel.2011.06.075
  11. Chen, X. Y., Vinh-Thang, H., Ramirez, A. A., Rodrigue, D., & Kaliaguine, S. (2015). Membrane gas separation technologies for biogas upgrading. RSC Advances, 5(31), 24399–24448. https://doi.org/10.1039/c5ra00666j
  12. Chen, Y. C. (2016). Potential for energy recovery and greenhouse gas mitigation from municipal solid waste using a waste-to-material approach. Waste Management, 58, 408–414. https://doi.org/10.1016/j.wasman.2016.09.007
  13. Cheng, S., & Logan, B. E. (2007). Sustainable and efficient biohydrogen production via electrohydrogenesis. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18871–18873. https://doi.org/10.1073/pnas.0706379104
  14. Couto, N. D., Silva, V. B., Monteiro, E., & Rouboa, A. (2015). Assessment of municipal solid wastes gasification in a semi-industrial gasifier using syngas quality indices. Energy, 93(PA1), 864–873. https://doi.org/10.1016/j.energy.2015.09.064
  15. Edjabou, M. E., Jensen, M. B., Götze, R., Pivnenko, K., Petersen, C., Scheutz, C., & Astrup, T. F. (2015). Municipal solid waste composition: Sampling methodology, statistical analyses, and case study evaluation. Waste Management, 36, 12–23. https://doi.org/10.1016/j.wasman.2014.11.009
  16. Galeno, G., Minutillo, M., & Perna, A. (2011). From waste to electricity through integrated plasma gasification/fuel cell (IPGFC) system. International Journal of Hydrogen Energy, 36(2), 1692–1701. https://doi.org/10.1016/j.ijhydene.2010.11.008
  17. Giusti, L. (2009). A review of waste management practices and their impact on human health. Waste Management, 29(8), 2227–2239. https://doi.org/10.1016/j.wasman.2009.03.028
  18. Hasan, M. M., Rasul, M. G., Khan, M. M. K., Ashwath, N., & Jahirul, M. I. (2021). Energy recovery from municipal solid waste using pyrolysis technology: A review on current status and developments. Renewable and Sustainable Energy Reviews, 145(March), 111073. https://doi.org/10.1016/j.rser.2021.111073
  19. He, H., Ma, X., Yu, Z., Chen, L., & Chen, X. (2021). A study on the deoxidation effect of different acidic zeolites during the co-pyrolysis of aged municipal solid waste and corn stalk. Journal of Analytical and Applied Pyrolysis, 159(August), 105319. https://doi.org/10.1016/j.jaap.2021.105319
  20. He, M., Xiao, B., Liu, S., Hu, Z., Guo, X., Luo, S., & Yang, F. (2010). Syngas production from pyrolysis of municipal solid waste (MSW) with dolomite as downstream catalysts. Journal of Analytical and Applied Pyrolysis, 87(2), 181–187. https://doi.org/10.1016/j.jaap.2009.11.005
  21. Huiru, Z., Yunjun, Y., Liberti, F., Bartocci, P., & Fantozzi, F. (2019). Technical and economic feasibility analysis of an anaerobic digestion plant fed with canteen food waste. Energy Conversion and Management, 180(November 2018), 938–948. https://doi.org/10.1016/j.enconman.2018.11.045
  22. Jamilatun, S., Pitoyo, J., Amelia, S., Ma, A., Hakika, D. C., & Mufandi, I. (2022). Indonesian Journal of Science & Technology Experimental Study on The Characterization of Pyrolysis Products from Bagasse ( Saccharum Officinarum L .) : Bio-oil , Biochar , and Gas Products. 7, 565–582
  23. Janajreh, I., Adeyemi, I., Raza, S. S., & Ghenai, C. (2021). A review of recent developments and future prospects in gasification systems and their modeling. Renewable and Sustainable Energy Reviews, 138(November 2020), 110505. https://doi.org/10.1016/j.rser.2020.110505
  24. Jeremiasse, A. W., Bergsma, J., Kleijn, J. M., Saakes, M., Buisman, C. J. N., Cohen Stuart, M., & Hamelers, H. V. M. (2011). Performance of metal alloys as hydrogen evolution reaction catalysts in a microbial electrolysis cell. International Journal of Hydrogen Energy, 36(17), 10482–10489. https://doi.org/10.1016/j.ijhydene.2011.06.013
  25. Jiang, D., Curtis, M., Troop, E., Scheible, K., McGrath, J., Hu, B., Suib, S., Raymond, D., & Li, B. (2011). A pilot-scale study on utilizing multi-anode/cathode microbial fuel cells (MAC MFCs) to enhance the power production in wastewater treatment. International Journal of Hydrogen Energy, 36(1), 876–884. https://doi.org/10.1016/j.ijhydene.2010.08.074
  26. Kadier, A., Logroño, W., Rai, P. K., Kalil, M. S., Mohamed, A., Hasan, H. A., & Hamid, A. A. (2017). None-platinum electrode catalysts and membranes for highly efficient and inexpensive H2 production in microbial electrolysis cells (MECs): A review. Iranian Journal of Catalysis, 7(2), 89–102
  27. Kadier, A., Simayi, Y., Abdeshahian, P., Azman, N. F., Chandrasekhar, K., & Kalil, M. S. (2016). A comprehensive review of microbial electrolysis cells (MEC) reactor designs and configurations for sustainable hydrogen gas production. Alexandria Engineering Journal, 55(1), 427–443. https://doi.org/10.1016/j.aej.2015.10.008
  28. Kartal, F., & Özveren, U. (2021). A comparative study for biomass gasification in bubbling bed gasifier using Aspen HYSYS. Bioresource Technology Reports, 13(October 2020). https://doi.org/10.1016/j.biteb.2020.100615
  29. Kaur, A., Bharti, R., & Sharma, R. (2021). Municipal solid waste as a source of energy. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2021.04.286
  30. Kaza, S., Shrikanth, S., & Chaudhary, S. (2021). More Growth, Less Garbage. More Growth, Less Garbage. https://doi.org/10.1596/35998
  31. Khan, M. Z., Nizami, A. S., Rehan, M., Ouda, O. K. M., Sultana, S., Ismail, I. M., & Shahzad, K. (2017). Microbial electrolysis cells for hydrogen production and urban wastewater treatment: A case study of Saudi Arabia. Applied Energy, 185, 410–420. https://doi.org/10.1016/j.apenergy.2016.11.005
  32. Kim, D., Prawisudha, P., & Yoshikawa, K. (2012). Hydrothermal upgrading of Korean MSW for solid fuel production: Effect of MSW composition. Journal of Combustion, 2012. https://doi.org/10.1155/2012/781659
  33. Li, S., Jin, H., Gao, L., Zhang, X., & Ji, X. (2014). Techno-economic performance and cost reduction potential for the substitute/synthetic natural gas and power cogeneration plant with CO 2 capture. Energy Conversion and Management, 85, 875–887. https://doi.org/10.1016/j.enconman.2013.12.071
  34. Logroño, W., Ramírez, G., Recalde, C., Echeverría, M., & Cunachi, A. (2015). Bioelectricity Generation from Vegetables and Fruits Wastes by Using Single Chamber Microbial Fuel Cells with High Andean Soils. Energy Procedia, 75, 2009–2014. https://doi.org/10.1016/j.egypro.2015.07.259
  35. Lu, L., & Ren, Z. J. (2016). Microbial electrolysis cells for waste biorefinery: A state of the art review. Bioresource Technology, 215, 254–264. https://doi.org/10.1016/j.biortech.2016.03.034
  36. Markoš, J. (2011). MASS TRANSFER IN CHEMICAL Edited by Jozef Markoš
  37. Meng, A., Chen, S., Long, Y., Zhou, H., Zhang, Y., & Li, Q. (2015). Pyrolysis and gasification of typical components in wastes with macro-TGA. Waste Management, 46, 247–256. https://doi.org/10.1016/j.wasman.2015.08.025
  38. Mukherjee, C., Denney, J., Mbonimpa, E. G., Slagley, J., & Bhowmik, R. (2020). A review on municipal solid waste-to-energy trends in the USA. Renewable and Sustainable Energy Reviews, 119(November 2019), 109512. https://doi.org/10.1016/j.rser.2019.109512
  39. Nasrabadi, A. M., & Moghimi, M. (2022). 4E analysis of stacked microbial fuel cell as a component in power plants for power generation and water treatment; with a cost-benefit perspective. Sustainable Energy Technologies and Assessments, 53(PD), 102742. https://doi.org/10.1016/j.seta.2022.102742
  40. Pitoyo, J., Eka, T., & Jamilatun, S. (2022). Bio-oil from Oil Palm Shell Pyrolysis as Renewable Energy : A Review. 9(2), 67–79
  41. Prado, E. S. P., Miranda, F. S., Petraconi, G., & Potiens, A. J. (2020). Use of plasma reactor to viabilise the volumetric reduction of radioactive wastes. Radiation Physics and Chemistry, 168(November 2019), 108625. https://doi.org/10.1016/j.radphyschem.2019.108625
  42. Rahman, K. M., Harder, M. K., & Woodard, R. (2018). Energy yield potentials from the anaerobic digestion of common animal manure in Bangladesh. Energy and Environment, 29(8), 1338–1353. https://doi.org/10.1177/0958305X18776614
  43. Ramzan, N., Ashraf, A., Naveed, S., & Malik, A. (2011). Simulation of hybrid biomass gasification using Aspen plus: A comparative performance analysis for food, municipal solid and poultry waste. Biomass and Bioenergy, 35(9), 3962–3969. https://doi.org/10.1016/j.biombioe.2011.06.005
  44. Rezaei, M., Ghobadian, B., Samadi, S. H., & Karimi, S. (2018). Electric power generation from municipal solid waste: A techno-economical assessment under different scenarios in Iran. Energy, 152, 46–56. https://doi.org/10.1016/j.energy.2017.10.109
  45. Roy, H., Alam, S. R., Bin-Masud, R., Prantika, T. R., Pervez, M. N., Islam, M. S., & Naddeo, V. (2022). A Review on Characteristics, Techniques, and Waste-to-Energy Aspects of Municipal Solid Waste Management: Bangladesh Perspective. Sustainability (Switzerland), 14(16). https://doi.org/10.3390/su141610265
  46. Sahoo, B. B., Sahoo, N., & Saha, U. K. (2012). Effect of H 2:CO ratio in syngas on the performance of a dual fuel diesel engine operation. Applied Thermal Engineering, 49, 139–146. https://doi.org/10.1016/j.applthermaleng.2011.08.021
  47. Selembo, P. A., Merrill, M. D., & Logan, B. E. (2009). The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells. Journal of Power Sources, 190(2), 271–278. https://doi.org/10.1016/j.jpowsour.2008.12.144
  48. Seo, Y.-C., Alam, M. T., & Yang, W.-S. (2018). Gasification of Municipal Solid Waste. Gasification for Low-Grade Feedstock. https://doi.org/10.5772/intechopen.73685
  49. Shah, A. V., Srivastava, V. K., Mohanty, S. S., & Varjani, S. (2021). Municipal solid waste as a sustainable resource for energy production: State-of-the-art review. Journal of Environmental Chemical Engineering, 9(4), 105717. https://doi.org/10.1016/j.jece.2021.105717
  50. Shehzad, A., Bashir, M. J. K., & Sethupathi, S. (2016). System analysis for synthesis gas (syngas) production in Pakistan from municipal solid waste gasification using a circulating fluidized bed gasifier. Renewable and Sustainable Energy Reviews, 60, 1302–1311. https://doi.org/10.1016/j.rser.2016.03.042
  51. Sipra, A. T., Gao, N., & Sarwar, H. (2018). Municipal solid waste (MSW) pyrolysis for bio-fuel production: A review of effects of MSW components and catalysts. Fuel Processing Technology, 175(February), 131–147. https://doi.org/10.1016/j.fuproc.2018.02.012
  52. Subramani, T., & Murugan, R. (2014). Generation of Electricity Using Solid Waste Management in Krishnagiri Municipalty. Journal of Engineering Research and Applications Www.Ijera.Com, 4(6), 222–232. www.ijera.com
  53. Tangri, N. (2017). W aste Gasification & Pyrolysis : High Risk , Low Yield Processes for W aste Management A Technology Risk Analysis. March
  54. Thabit, Q., Nassour, A., & Nelles, M. (2022). Flue Gas Composition and Treatment Potential of a Waste Incineration Plant. Applied Sciences (Switzerland), 12(10), 1–30. https://doi.org/10.3390/app12105236
  55. Tomić, T., Dominković, D. F., Pfeifer, A., Schneider, D. R., Pedersen, A. S., & Duić, N. (2017). Waste to energy plant operation under the influence of market and legislation conditioned changes. Energy, 137, 1119–1129. https://doi.org/10.1016/j.energy.2017.04.080
  56. Trindade, A. B., Palacio, J. C. E., González, A. M., Rúa Orozco, D. J., Lora, E. E. S., Renó, M. L. G., & del Olmo, O. A. (2018). Advanced exergy analysis and environmental assesment of the steam cycle of an incineration system of municipal solid waste with energy recovery. Energy Conversion and Management, 157(August 2017), 195–214. https://doi.org/10.1016/j.enconman.2017.11.083
  57. Tsai, W. T., & Kuo, K. C. (2010). An analysis of power generation from municipal solid waste (MSW) incineration plants in Taiwan. Energy, 35(12), 4824–4830. https://doi.org/10.1016/j.energy.2010.09.005
  58. US Energy Information Administration. (2022). Cost and Performance Characteristics of New Generating Technologies. Annual Energy Outlook 2022, 2022(March), 1–4. https://www.eia.gov/outlooks/aeo/assumptions/pdf/table_8.2.pdf
  59. Wang, N., Chen, D., Arena, U., & He, P. (2017). Hot char-catalytic reforming of volatiles from MSW pyrolysis. Applied Energy, 191, 111–124. https://doi.org/10.1016/j.apenergy.2017.01.051
  60. Wang, Y. P., Liu, X. W., Li, W. W., Li, F., Wang, Y. K., Sheng, G. P., Zeng, R. J., & Yu, H. Q. (2012). A microbial fuel cell-membrane bioreactor integrated system for cost-effective wastewater treatment. Applied Energy, 98, 230–235. https://doi.org/10.1016/j.apenergy.2012.03.029
  61. Wang, Y., Zhang, X., Liao, W., Wu, J., Yang, X., Shui, W., Deng, S., Zhang, Y., Lin, L., Xiao, Y., Yu, X., & Peng, H. (2018). Investigating impact of waste reuse on the sustainability of municipal solid waste (MSW) incineration industry using emergy approach: A case study from Sichuan province, China. Waste Management, 77, 252–267. https://doi.org/10.1016/j.wasman.2018.04.003
  62. Xu, X., Zhao, Q., Wu, M., Ding, J., & Zhang, W. (2017). Biodegradation of organic matter and anodic microbial communities analysis in sediment microbial fuel cells with/without Fe(III) oxide addition. Bioresource Technology, 225, 402–408. https://doi.org/10.1016/j.biortech.2016.11.126
  63. Yong, Z. J., Bashir, M. J. K., Ng, C. A., Sethupathi, S., Lim, J. W., & Show, P. L. (2019). Sustainable waste-to-energy development in Malaysia: Appraisal of environmental, financial, and public issues related with energy recovery from municipal solid waste. Processes, 7(10), 1–29. https://doi.org/10.3390/pr7100676
  64. Zaccariello, L., & Mastellone, M. L. (2015). Fluidized-bed gasification of plastic waste, wood, and their blends with coal. Energies, 8(8), 8052–8068. https://doi.org/10.3390/en8088052
  65. Zhang, D., Huang, G., Xu, Y., & Gong, Q. (2015). Waste-to-energy in China: Key challenges and opportunities. Energies, 8(12), 14182–14196. https://doi.org/10.3390/en81212422
  66. Zhang, F., Ge, Z., Grimaud, J., Hurst, J., & He, Z. (2013). Long-term performance of liter-scale microbial fuel cells treating primary effluent installed in a municipal wastewater treatment facility. Environmental Science and Technology, 47(9), 4941–4948. https://doi.org/10.1021/es400631r
  67. Zuo, Y., Cheng, S., & Logan, B. E. (2008). Ion exchange membrane cathodes for scalable microbial fuel cells. Environmental Science and Technology, 42(18), 6967–6972. https://doi.org/10.1021/es801055r

Last update:

No citation recorded.

Last update: 2024-11-02 11:01:54

No citation recorded.