skip to main content

Perubahan Resapan Airtanah Pasca Gunungapi Semeru 4 Desember 2021

1Department of Information System, Universitas Brawijaya, Jl. Veteran, Kota Malang, Jawa Timur, Indonesia 65145, Indonesia

2Department of Geography, Universitas Negeri Malang, Indonesia

Received: 8 Jan 2023; Revised: 10 Mar 2023; Accepted: 8 Apr 2023; Available online: 2 Jul 2023; Published: 2 Jul 2023.
Editor(s): Budi Warsito

Citation Format:
Abstract
Letusan gunung berapi dapat menyebabkan kerusakan ekosistem, dimana banyak vegetasi yang hilang sehingga mengurangi resapan airtanah, yang menyebabkan ketersediaan air bagi masyarakat semakin berkurang di masa yang akan datang. Oleh karena itu, sumber daya air perlu dilestarikan untuk masa depan. Kajian ini mengidentifikasi kondisi spasial imbuhan di lereng Gunungapi Semeru dan potensi airtanah sebelum dan sesudah letusan gunungapi. Selain itu, pengaruh kondisi daerah resapan dan potensi air tanah pasca erupsi di lereng Gunung Api Semeru juga dianalisis berdasarkan metode Multi Influence Factor (MIF). Penelitian ini menggunakan tujuh parameter yaitu curah hujan, geomorfologi, geologi, kemiringan lereng, tekstur tanah, kerapatan drainase dan tutupan lahan. Parameter-parameter tersebut diukur dengan menggunakan teknik Multiple Influence Factors (MIF), dimana informasi yang diperoleh dari masing-masing parameter ditimbang dan disortir untuk mengevaluasi potensi zona resapan airtanah. Hasil perhitungan dengan menggunakan teknik MIF menunjukkan bahwa terjadi penurunan potensi airtanah di lereng Gunung Api Semeru pasca erupsi, sehingga tidak dapat memberikan pengaruh yang baik terhadap kondisi airtanah di lereng Gunung Api Semeru. Faktor tutupan lahan merupakan faktor yang paling terpengaruh oleh erupsi Gunung Semeru, sehingga berpengaruh signifikan terhadap penurunan potensi airtanah di lereng Gunung Api Semeru.

Note: This article has supplementary file(s).

Fulltext View|Download |  Cover Letter
Cover Letter
Subject resapan airtanah; erupsi gunungapi; airtanah; MIF
Type Cover Letter
  Download (15KB)    Indexing metadata
Keywords: resapan airtanah; erupsi gunungapi; airtanah; MIF
Funding: Universitas Brawijaya

Article Metrics:

  1. Alnizar Zagarino, Dhea Cika Pratiwi, Rika Nurhayati, dan D. H. (2021). Peran Badan Penanggulangan Bencana Daerah Dalam Manajemen Bencana Erupsi Gunung Semeru Di Kabupaten Lumajang. Jurnal Syntax Admitration, 2(5), 2013–2015
  2. Dar, T., Rai, N., & Bhat, A. (2020). Delineation of potential groundwater recharge zones using analytical hierarchy process (AHP). Geology, Ecology, and Landscapes, 00(00), 1–16. https://doi.org/10.1080/24749508.2020.1726562
  3. Magesh, N. S., Chandrasekar, N., & Soundranayagam, J. P. (2012). Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geoscience Frontiers, 3(2), 189–196. https://doi.org/10.1016/j.gsf.2011.10.007
  4. Masitoh, F., Ar-Rouf, F. B., & Rusydi, A. N. (2022). Identification of Groundwater Potential Zone using Multi-Influence Factor Technique (Study Case: Brantas Groundwater Basin, East Java, Indonesia). IOP Conference Series: Earth and Environmental Science, 1066(1), 012004. https://doi.org/10.1088/1755-1315/1066/1/012004
  5. Minnig, M., Moeck, C., Radny, D., & Schirmer, M. (2018). Impact of urbanization on groundwater recharge rates in Dübendorf, Switzerland. Journal of Hydrology, 563, 1135–1146. https://doi.org/10.1016/j.jhydrol.2017.09.058
  6. Morbidelli, R., Saltalippi, C., Flammini, A., & Govindaraju, R. S. (2018). Role of slope on infiltration: A review. Journal of Hydrology, 557, 878–886. https://doi.org/10.1016/j.jhydrol.2018.01.019
  7. Morgan, R. C. P. (1979). Soil Erosion . Longman
  8. Páscoa, P., Gouveia, C. M., & Kurz-Besson, C. (2020). A simple method to identify potential groundwater-dependent vegetation using NDVI MODIS. Forests, 11(2). https://doi.org/10.3390/f11020147
  9. Reddy Machireddy, S., Reddy, N. N., Naik, M. N., & Kumar, M. B. (2022). Demarcation of Ground Water Potential Zones using Remote Sensing and GIS Applications (Vol. 11, Issue 1)
  10. Saputra, D. D., Sari, R. R., Hairiah, K., Widianto, Suprayogo, D., & van Noordwijk, M. (2022). Recovery after volcanic ash deposition: vegetation effects on soil organic carbon, soil structure and infiltration rates. Plant and Soil, 474(1–2), 163–179. https://doi.org/10.1007/s11104-022-05322-7
  11. Senanayake, I. P., Dissanayake, D. M. D. O. K., Mayadunna, B. B., & Weerasekera, W. L. (2016). An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques. Geoscience Frontiers, 7(1), 115–124. https://doi.org/10.1016/j.gsf.2015.03.002
  12. Siddi Raju, R., Sudarsana Raju, G., & Rajasekhar, M. (2019). Identification of groundwater potential zones in Mandavi River basin, Andhra Pradesh, India using remote sensing, GIS and MIF techniques. HydroResearch, 2, 1–11. https://doi.org/10.1016/j.hydres.2019.09.001
  13. Thapa, R., Gupta, S., Guin, S., & Kaur, H. (2017). Assessment of groundwater potential zones using multi-influencing factor (MIF) and GIS: a case study from Birbhum district, West Bengal. Applied Water Science, 7(7), 4117–4131. https://doi.org/10.1007/s13201-017-0571-z
  14. Verma, R., Jayanti, T., Vinoda, S., & Gowda, A. N. S. (2015). Tree species as indicators of ground water recharge and discharge. International Journal of Engineering and Technical Research, 3(11), 127–135
  15. Wibowo, A. (2021). Decadal Modeling (2004-2021) Ecosystem Recovery Impacted by Mount Semeru Eruption Volcanic Activities using Vegetation Succession as a Proxy in the Lava Flow Stream. https://doi.org/10.20944/preprints202112.0224.v1

Last update:

No citation recorded.

Last update: 2024-06-19 03:53:44

No citation recorded.