skip to main content

Estimasi Populasi Terpapar pada Kejadian Banjir di Kecamatan Biringkanaya Kota Makassar

1Program Studi Ilmu Perencanaan Wilayah, Sekolah Pascasarjana, IPB University, Jl. Raya Dramaga, Kampus IPB Dramaga Bogor, 16680 Jawa Barat, Indonesia, Indonesia

2Departemen Ilmu Tanah dan Sumberdaya Lahan, Fakultas Pertanian, IPB University, Jl. Raya Dramaga, Kampus IPB Dramaga Bogor, 16680 Jawa Barat, Indonesia, Indonesia

Received: 26 Jul 2024; Revised: 10 Mar 2025; Accepted: 29 Apr 2025; Available online: 25 May 2025; Published: 31 May 2025.
Editor(s): Budi Warsito

Citation Format:
Abstract

Banjir merupakan ancaman serius bagi kawasan perkotaan, termasuk Kecamatan Biringkanaya, Kota Makassar, yang sering mengalami kejadian banjir dengan tingkat keparahan yang tinggi. Penelitian ini bertujuan untuk mengestimasi populasi yang terpapar banjir di Kecamatan Biringkanaya menggunakan pendekatan dasimetrik dengan integrasi data open source bersumber dari citra Sentinel-1 SAR dan data bangunan dari OpenStreetMap (OSM). Ekstraksi genangan banjir dilakukan dengan mengaplikasikan teknik change detection pada citra pra-banjir dan citra saat banjir terjadi pada Desember 2023, yang dianalisis pada platform Google Earth Engine (GEE). Hasil analisis menunjukkan luas area yang tergenang mencapai 160,60 ha, dengan Kelurahan Sudiang Raya sebagai wilayah dengan genangan terluas. Pengujian overall accuracy terhadap hasil klasifikasi kawasan tergenang menunjukkan tingkat akurasi sebesar 85,71%. Data bangunan dari OSM digunakan untuk memetakan distribusi populasi berdasarkan kepadatan bangunan di Kecamatan Biringkanaya. Distribusi populasi kemudian disinkronkan dengan data genangan banjir untuk mengestimasi jumlah penduduk yang terpapar. Hasil penelitian menunjukkan bahwa sebanyak 915 jiwa terpapar banjir di Kecamatan Biringkanaya. Sementara itu, terjadi anomali di Kelurahan Berua, di mana luas genangan banjir di wilayah ini lebih kecil dibandingkan wilayah lain, namun jumlah penduduk terdampak justru paling tinggi. Adanya underestimate dalam penelitian ini disebabkan oleh keterbatasan citra dalam menangkap nilai backscatter air pada kawasan dengan kepadatan bangunan tinggi, sebagaimana tercermin dari tingkat akurasi yang diperoleh. Penelitian ini memberi kontribusi penting dalam memahami risiko banjir perkotaan dan perencanaan mitigasi di wilayah yang rentan. Hasil penelitian ini dapat digunakan untuk memandu perumusan kebijakan publik dalam pengembangan infrastruktur drainase dan perlindungan banjir, serta mempersiapkan respon darurat yang lebih efektif guna melindungi populasi yang memiliki risiko terpapar banjir.

Fulltext View|Download
Keywords: Banjir; Dasimetrik; Hujan; Populasi; Sentinel-1 SAR; OpenStreetMap

Article Metrics:

  1. Amitrano, D., Cecinati, F., Di Martino, G., Iodice, A., Mathieu, P. P., Riccio, D., & Ruello, G. (2018). Feature extraction from multitemporal SAR images using selforganizing map clustering and object-based image analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(5), 1556-1570. https://doi.org/10.1109/JSTARS.2018.2808447
  2. Amitrano, D., Di Martino, G., Di Simone, A., & Imperatore, P. (2024). Flood detection with SAR: A review of techniques and datasets. Remote Sensing, 16(4), 656
  3. https://doi.org/10.3390/rs16040656
  4. Badan Pusat Statistik Kota Makassar (2023). Kecamatan Biringkanaya Dalam Angka 2023. Kota Makassar
  5. Bertsch, R., Glenis, V., & Kilsby, C. (2022). Building level flood exposure analysis using a hydrodynamic model. Environmental Modelling & Software, 156, 105490
  6. https://doi.org/10.1016/j.envsoft.2022.105490
  7. Bioresita, F., Hayati, N., Ngurawan, M. G. R., & Berliana, M. (2022). Integrating Insar Coherence and Backscattering for Identification of Temporary Surface Water, Case Study: South Kalimantan Flooding, Indonesia. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43, 33-39. https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-33-2022
  8. Clement, M. A., Kilsby, C. G., & Moore, P. (2018). Multi‐temporal synthetic aperture radar flood mapping using change detection. Journal of Flood Risk Management, 11(2), 152-168. https://doi.org/10.1111/jfr3.12303
  9. Congalton RG, Green K. (1999). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. Boca Raton, Florida (US): CRC Press, Inc
  10. De Ruig, L.T., Haer, T., de Moel, H., Botzen, W.J.W., Aerts, J.C.J.H. (2019). A micro-scale cost-benefit analysis of building-level flood risk adaptation measures in Los Angeles. Water Resour. Econ. 100147. https://doi.org/10.1016/j.wre.2019.100147
  11. Dhanabalan, S. P., Abdul Rahaman, S., & Jegankumar, R. (2021). Flood monitoring using Sentinel-1 sar data: A case study based on an event of 2018 and 2019 Southern part of Kerala. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 44, 37-41. https://doi.org/10.5194/isprs-archives-XLIV-M-3-2021-37-2021
  12. Halima, I. E., & Hiroaki, S. (2022). Assessing the disparities of the population exposed to flood hazards in Nigeria. IOP Conference Series: Earth and Environmental Science (Vol. 1016, No. 1, p. 012007). IOP Publishing
  13. https://doi.org/10.1088/1755-1315/1016/1/012007
  14. Hossain, M.K. & Meng, Q. (2020). A fine-scale spatial analytics of the assessment and mapping of buildings and population at different risk levels of urban flood. Land Use Policy, 99, 104829. https://doi.org/10.1016/j.landusepol.2020.104829
  15. Islam, M. T. & Meng, Q. (2022). An exploratory study of Sentinel-1 SAR for rapid urban flood mapping on Google Earth Engine. International Journal of Applied Earth Observation and Geoinformation, 113, 103002. https://doi.org/10.1016/j.jag.2022.103002
  16. Kaspersen, S. P., Høegh Ravn, N., Arnbjerg-Nielsen, K., Madsen, H., and Drews, M. (2017). Comparison of the impacts of urban development and climate change on exposing European cities to pluvial flooding, Hydrol. Earth Syst. Sci., 21, 4131–4147,
  17. https://doi.org/10.5194/hess-21-4131-2017,2017
  18. Kounadi, O.; Ristea, A.; Leitner, M.; Langford, C. (2018). Population at risk: Using areal interpolation and Twitter messages to create population models for burglaries and robberies. Cartogr. Geogr. Inf. Sci. 45, 205–220
  19. https://doi.org/10.1080/15230406.2017.1304243
  20. Kumar, H., Karwariya, S.K. & Kumar, R. (2022). Google Earth Engine-Based Identification of Flood Extent and Flood-Affected Paddy Rice Fields Using Sentinel-2 MSI and Sentinel-1 SAR Data in Bihar State, India. J Indian Soc Remote Sens 50, 791–803
  21. https://doi.org/10.1007/s12524-021-01487-3
  22. Li-An, C., Billa, L., Azari, M. (2018). Anthropocene climate and landscape change that increases flood disasters. Int J Hydro. 2(4):487‒491
  23. https://doi.org/10.15406/ijh.2018.02.00115
  24. Lolokada, T. W., Rogi, O. H., & Poluan, R. J. (2021). Tipologi Urban Sprawl Berdasarkan Atribut Kontinuitas Area Terbangun di Kecamatan Biringkanaya dan Kecamatan Tamalanrea, Kota Makassar. SPASIAL, 8(2), 164-173
  25. https://doi.org/10.35793/sp.v8i2.33562
  26. Martinis S, Rieke C. (2015). Backscatter analysis using multi-temporal and multi-frequency SAR data in the context of flood mapping at River Saale, Germany. Remote Sens. 7(6):7732–7752. https://doi.org/10.3390/rs70607732
  27. Priyatna, M., Wijaya, S. K., Khomarudin, M. R., Yulianto, F., Nugroho, G., Afgatiani, P. M., ... & Hussein, M. A. (2023). The use of multi-sensor satellite imagery to analyze flood events and land cover changes using change detection and machine learning techniques in the Barito watershed. Journal of Degraded & Mining Lands Management, 10(2). https://doi.org/10.15243/jdmlm.2023.102.4073
  28. Ramadhani, A.M.A.R. (2021). Mitigasi Bencana Banjir Genangan Dalam Kawasan perkembangan Permukiman Di Kelurahan Berua, Kota Makassar, Skripsi, Fakultas Teknik, Unhas. Diakses dari :
  29. https://repository.unhas.ac.id/id/eprint/13673/2/D101171310_skripsi_19-01-2022 1-2
  30. Rwanga, S. & Ndambuki, J. M. (2017). Accuracy Assessment of Landuse/Landcover Classification Using Remote Sensing and GIS. Internasional Journal of Geosciences, 8(04), 611
  31. https://doi.org/10.4236/ijg.2017.84033
  32. Simamora, F. B., Sasmito, M. B., Hani’ah. (2015). Kajian Metode Segmentasi untuk Identifikasi Tutupan Lahan dan Luas Bidang Tanah menggunakan Citra Google Earth. Jurnal Geodesi Undip, 4(4): 43-51
  33. https://doi.org/10.14710/jgundip.2015.9909
  34. Silván-Cárdenas, J.L.; Wang, L.; Rogerson, P.; Wu, C.; Feng, T.; Kamphaus, B.D. (2010). Assessing fine-spatial-resolution remote sensing for small-area population estimation. Int. J. Remote Sens. 31, 5605–5634. https://doi.org/10.1080/01431161.2010.496800
  35. Song, Y.; Huang, B.; Cai, J.; Chen, B. (2018). Dynamic assessments of population exposure to urban greenspace using multi-source big data. Sci. Total Environ. 634, 1315–1325
  36. https://doi.org/10.1016/j.scitotenv.2018.04.061
  37. United Nations, Population Division. 2022. Database on Household Size and Composition
  38. Diakses dari :
  39. https://www.un.org/development/desa/pd/data/household-size-and-composition
  40. Ursu, C. D., Benedek, J., & Temerdek-Ivan, K. 2025. Accuracy Assessment of Four Land Cover Datasets at Urban, Rural, and Metropolitan Area Level. Remote Sensing, 17(5), 756
  41. https://doi.org/10.3390/rs17050756
  42. Wu, X., Zhang, Z., Xiong, S., Zhang, W., Tang, J., Li, Z., ... & Li, R. (2023). A Near-Real-Time Flood Detection Method Based on Deep Learning and SAR Images. Remote Sensing, 15(8), 2046. https://doi.org/10.3390/rs15082046
  43. Yao, Y., Liu, X., Li, X., Zhang, J., Liang, Z., Mai, K., & Zhang, Y. (2017). Mapping fine-scale population distributions at the building level by integrating multisource geospatial big data. International Journal of Geographical Information Science, 31(6), 1220-1244
  44. https://doi.org/10.1080/13658816.2017.1290252
  45. Yu, B., Lian, T., Huang, Y., Yao, S., Ye, X., Chen, Z., Yang, C., Wu, J. (2019). Integration of nighttime light remote sensing images and taxi GPS tracking data for population surface enhancement. Int. J. Geogr. Inf. Sci. 33, 687–706
  46. https://doi.org/10.1080/13658816.2018.1555642
  47. Zhao, Li., Zhang, Du. (2019). Improving the Accuracy of Fine-Grained Population Mapping Using Population-Sensitive POIs. Remote Sens. 11, 2502
  48. https://doi.org/10.3390/rs11212502
  49. Zhu, S., Dai, Q., Zhao, B., & Shao, J. (2020). Assessment of population exposure to urban flood at the building scale. Water, 12(11), 3253
  50. https://doi.org/10.3390/w12113253

Last update:

No citation recorded.

Last update: 2025-06-03 04:59:43

No citation recorded.