skip to main content

Synthesis, Characterization of Cu, S doped TiO2 and Its Photocatalytic Activity for Degradation of Remazol Black B

Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University, Indonesia

Received: 2 Jan 2019; Revised: 4 Mar 2019; Accepted: 12 Mar 2019; Published: 31 Mar 2019.
Open Access Copyright 2019 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Copper and sulfur modified TiO2(Cu-S-TiO2) photocatalyst was successfully synthesized using TiCl4, Cu(NO3)2.3H2O and H2SO4 as precursors by the sol-gel method andcalcination at 450°C for 4 hours. The synthesized photocatalyst was characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), Diffuse Reflectance Spectroscopy (DRS), Brunauer Emmett Teller (BET) method. The XRD results showed that the Cu-S-TiO2 photocatalyst had an anatase phase with a crystal grain size of 17.54 nm. However, the SEM image of the modified TiO2 showed inhomogeneous phase due to the crystal clustering of imperfect homogenization during the synthesis and sintering processes. The patterns of EDSof Cu-S-TiO2depicted the elements of Ti, O, Cu and S with doping of Cu and S c.a. 7 and 1%, respectively. Analysis using DRS UV-Vis showed Cu-S-TiO2 was able to shift the absorption of the TiO2 photocatalyst wavelength to the visible region with a band energy gap of 1.9 eV. The BET analysis results showed that the specific surface area (SBET), pore volume (Vp) and average pore volume radius (Dp) were measured from large Cu-S-TiO2, therefore Cu-S-TiO2 had good physicochemical and photocatalytic properties. The photocatalytic activity of 0.1 g Cu-S-TiO2 with 15 Watt tungsten light irradiation for 4 h was able to degrade 50 mL remazol black B 10 mg/L c.a. 92.60 %.

Fulltext View|Download
Keywords: Cu, S doped TiO2; photocatalytic; degradation; remazol black B
Funding: This work was supported by DIPA Nomor DIPA-023.04.1.673453/2015, 14 Nopember 2014, Revised DIPA 01, 3 March 2015. The special thank to Director of Direktorat Penelitian dan Pengabdian Masyarakat (Ditl

Article Metrics:

  1. Rongliang Qiu, Dongdong Zhang, Zenghui Diao, Xiongfei Huang, Chun He, Jean-Louis Morel, Ya Xiong, Visible light induced photocatalytic reduction of Cr(VI) over polymer-sensitized TiO2 and its synergism with phenol oxidation, Water Research, 46, 7, (2012) 2299-2306 https://doi.org/10.1016/j.watres.2012.01.046
  2. S.T. Hussain, M. Mazhar, Asima Siddiqa, Hina Javid, M. Siddiq, Cu-S coped TiO2 nanophotocatalyst for the degradation of environmental and industrial pollutants, The Open Catalysis Journal, 5, 1, (2012) 21-30
  3. Xiaobo Chen, Samuel S. Mao, Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications, Chemical Reviews, 107, 7, (2007) 2891-2959 http://doi.org/10.1021/cr0500535
  4. Jarnuzi Gunlazuardi, Fotokatalisis pada permukaan TiO2: Aspek Fundamental dan aplikasinya, Seminar Nasional Kimia Fisika II, (2001)
  5. John N. Clifford, Emilio Palomares, Md K. Nazeeruddin, M. Grätzel, Jenny Nelson, X. Li, Nicholas J. Long, James R. Durrant, Molecular Control of Recombination Dynamics in Dye-Sensitized Nanocrystalline TiO2 Films: Free Energy vs Distance Dependence, Journal of the American Chemical Society, 126, 16, (2004) 5225-5233 http://doi.org/10.1021/ja039924n
  6. Manoj A. Lazar, Shaji Varghese, Santhosh S. Nair, Photocatalytic Water Treatment by Titanium Dioxide: Recent Updates, Catalysts, 2, 4, (2012) 572-601 https://doi.org/10.3390/catal2040572
  7. Wei Zhao, Chuncheng Chen, Xiangzhong Li, Jincai Zhao, Hisao Hidaka, Nick Serpone, Photodegradation of Sulforhodamine-B Dye in Platinized Titania Dispersions under Visible Light Irradiation: Influence of Platinum as a Functional Co-catalyst, The Journal of Physical Chemistry B, 106, 19, (2002) 5022-5028 http://doi.org/10.1021/jp020205p
  8. Vaidyanathan Subramanian, Eduardo E. Wolf, Prashant V. Kamat, Catalysis with TiO2/Gold Nanocomposites. Effect of Metal Particle Size on the Fermi Level Equilibration, Journal of the American Chemical Society, 126, 15, (2004) 4943-4950 http://doi.org/10.1021/ja0315199
  9. Xiangxin Yang, Chundi Cao, Keith Hohn, Larry Erickson, Ronaldo Maghirang, Dambar Hamal, Kenneth Klabunde, Highly visible-light active C- and V-doped TiO2 for degradation of acetaldehyde, Journal of Catalysis, 252, 2, (2007) 296-302 https://doi.org/10.1016/j.jcat.2007.09.014
  10. Sulistias Mustika, Abdul Haris, Nor Basid Adiwibawa Prasetya, Kajian Metode Elektrofotokatalisis, Elektrolisis dan Fotokatalisis pada Dekolorisasi Larutan Zat Warna Remazol Black B yang Mengandung Ion Logam Cu2+, Jurnal Kimia Sains dan Aplikasi, 16, 1, (2013) 17-22
  11. Siti Fatimah, Abdul Haris, Pengaruh Dopan Zink Oksida pada TiO2 terhadap Penurunan Kadar Limbah Fenol dan Cr (VI) secara Simultan dengan Metode Fotokatalisis, Jurnal Kimia Sains dan Aplikasi, 17, 3, (2014) 86-89
  12. M. Hamadanian, A. Reisi-Vanani, A. Majedi, Synthesis, characterization and effect of calcination temperature on phase transformation and photocatalytic activity of Cu,S-codoped TiO2 nanoparticles, Applied Surface Science, 256, 6, (2010) 1837-1844 https://doi.org/10.1016/j.apsusc.2009.10.016
  13. Steffita Rahayuning Purbandini, Abdul Haris, Effect of ZnO Dopant on TiO2 on Simultaneous Decrease of Phenol, Pb (II) and COD using Photocatalysis Method, Jurnal Kimia Sains dan Aplikasi, 21, 1, (2018) 34-38
  14. N. Venkatachalam, M. Palanichamy, V. Murugesan, Sol–gel preparation and characterization of alkaline earth metal doped nano TiO2: Efficient photocatalytic degradation of 4-chlorophenol, Journal of Molecular Catalysis A: Chemical, 273, 1, (2007) 177-185 https://doi.org/10.1016/j.molcata.2007.03.077
  15. Yongfa Zhu, Li Zhang, Chong Gao, Lili Cao, The synthesis of nanosized TiO2 powder using a sol-gel method with TiCl4 as a precursor, Journal of Materials Science, 35, 16, (2000) 4049-4054 http://doi.org/10.1023/a:1004882120249
  16. Jinlong Zhang, Yongmei Wu, Mingyang Xing, Sajjad Ahmed Khan Leghari, Shamaila Sajjad, Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides, Energy & Environmental Science, 3, 6, (2010) 715-726 http://doi.org/10.1039/B927575D
  17. José A. Rodriguez, Marcos Fernández-García, Synthesis, Properties, and Applications of Oxide Nanomaterials, Wiley, 2007
  18. M. Alam Khan, Hee-Tae Jung, O. Bong Yang, Synthesis and Characterization of Ultrahigh Crystalline TiO2 Nanotubes, The Journal of Physical Chemistry B, 110, 13, (2006) 6626-6630 http://doi.org/10.1021/jp057119k
  19. Manoranjan Sahu, Pratim Biswas, Single-step processing of copper-doped titania nanomaterials in a flame aerosol reactor, Nanoscale Research Letters, 6, 1, (2011) 441 http://doi.org/10.1186/1556-276x-6-441

Last update:

  1. Efficient photocatalysis of carbon coupled TiO2 to degrade pollutants in wastewater – A review

    Charitha Thambiliyagodage. Environmental Nanotechnology, Monitoring & Management, 18 , 2022. doi: 10.1016/j.enmm.2022.100737
  2. The Effect of Cu Ohmic Contact on Photoelectrochemical Property of S-CuO Thin Film Photocathodes

    Aziz Amrullah, Gunawan Gunawan, Nor Basid Adiwibawa Prasetya. Jurnal Kimia Sains dan Aplikasi, 22 (6), 2019. doi: 10.14710/jksa.22.6.256-262

Last update: 2024-04-18 05:20:19

No citation recorded.