skip to main content

Efek Temperatur, Tekanan dan Waktu Reaksi pada Hidrogenasi Asam Heksadekanoat Menjadi 1-Eksadekanol Menggunakan Katalis Ru-Sn(3,0)/C

Effect of Temperature, Pressure, and Reaction Time on Hydrogenation of Hexadecanoic Acid to 1-Hexadecanol Using a Ru-Sn(3.0)/C Catalyst

1Research Catalyst Group, Department of Chemistry, Lambung Mangkurat University, Indonesia

2Department of Chemistry, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Jl. A. Yani Km 36.0 Banjarbaru 70714, South Kalimantan, Indonesia

3Catalysis for Sustainable Energy and Environment (CATSuRe), Wetland-based Material Research Center, Lambung Mangkurat University, Banjarbaru 70714, South Kalimantan, Indonesia

Received: 11 Mar 2019; Revised: 2 May 2019; Accepted: 16 May 2019; Published: 31 Jul 2019.
Open Access Copyright 2019 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract
Effect of temperature, initial H2 pressure, and reaction time on the selective hydrogenation of hexadecanoate acid to 1-hexadecanol over bimetallic ruthenium-tin supported on carbon (denoted as Ru-Sn(3.0)/C; 3.0 is molar ratio Ru/Sn) has been systematically investigated. Ru-Sn(3.0)/C catalyst was synthesized using a simple hydrothermal method at temperature of 150oC for 24 h followed by reduction with hydrogen at at 400oC and 500°C for 1.5 h. The XRD patterns of reduced Ru-Sn(3.0)/C showed a series diffraction peaks of bimetallic alloy Ru3Sn7 at 2θ = 30.0°; 35.0°; and 41.3° which are recognized as (310), (321), and (411) reflection planes present. The N2-adsorpsion/desorption profiles confirmed that the catalyst structure was microporous and mesoporous sizes with specific surface area (SBET) of 207 m2/g, pore volume (VpBJH) 0.1015 cm3/g, and pore diameter (dpBJH) 1,21 nm. NH3-TPD profile shows that the desorption temperature of 157.1°C was a weak acidity (Bronsted acid site) with amount of acid sites was 0.117 mmol/g. Meanwhile, the desorption temperature of 660.3°C was a strong acidity (Lewis acid site) with amount of acid sites was 0.826 mmol/g. The highest conversion of hexadecanoic acid (86.24%) was achieved at reaction temperature180°C, initial H2 pressure of 5.0 MPa, a reaction time of 6 h in ethanol solvent and afforded yield of hexadecane (0.15%), 1-hexadecanol (4.27%), and ethyl hexadecanoate (81.82%). At reaction temperature of 150°C, H2 of 3.0 MPa, and a reaction time of 18 h, 73.27% of hexadecanoic acid was converted to 1-hexadecanol (0.24%) and ethyl hexadecanoate (73,03%).
Fulltext View|Download
Keywords: Ru-Sn(3.0)/C catalyst; selective hydrogenation; hexadecanoic acid; 1-hexadecanol; ethyl hexadecanoate

Article Metrics:

  1. James Pritchard, Georgy A. Filonenko, Robbert van Putten, Emiel J. M. Hensen, Evgeny A. Pidko, Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: history, advances and future directions, Chemical Society Reviews, 44, 11, (2015) 3808-3833 http://doi.org/10.1039/C5CS00038F
  2. Kari Pirkanniemi, Mika Sillanpää, Heterogeneous water phase catalysis as an environmental application: a review, Chemosphere, 48, 10, (2002) 1047-1060 https://doi.org/10.1016/S0045-6535(02)00168-6
  3. Makoto Toba, Shin-ichi Tanaka, Shu-ichi Niwa, Fujio Mizukami, Zsuzsanna Koppány, László Guczi, Kien-Yoo Cheah, Thin-Sue Tang, Synthesis of alcohols and diols by hydrogenation of carboxylic acids and esters over Ru–Sn–Al2O3 catalysts, Applied Catalysis A: General, 189, 2, (1999) 243-250 https://doi.org/10.1016/S0926-860X(99)00281-1
  4. Takanori Miyake, Takahiko Makino, Shin-ichi Taniguchi, Hiroko Watanuki, Tomohiro Niki, Shizuka Shimizu, Yuki Kojima, Makoto Sano, Alcohol synthesis by hydrogenation of fatty acid methyl esters on supported Ru–Sn and Rh–Sn catalysts, Applied Catalysis A: General, 364, 1, (2009) 108-112 https://doi.org/10.1016/j.apcata.2009.05.036
  5. Haresh G. Manyar, Cristina Paun, Rashidah Pilus, David W. Rooney, Jillian M. Thompson, Christopher Hardacre, Highly selective and efficient hydrogenation of carboxylic acids to alcohols using titania supported Pt catalysts, Chemical Communications, 46, 34, (2010) 6279-6281 http://doi.org/10.1039/C0CC01365J
  6. Rodiansono, Syahrul Khairi, Takayoshi Hara, Nobuyuki Ichikuni, Shogo Shimazu, Highly efficient and selective hydrogenation of unsaturated carbonyl compounds using Ni–Sn alloy catalysts, Catalysis Science & Technology, 2, 10, (2012) 2139-2145 http://doi.org/10.1039/C2CY20216F
  7. Qi Lin, Huirong Zheng, Guocai Zheng, Xinzhong Li, Benyong Lou, Effects of Yttrium Doping on the Performance of Ru-Based Catalysts for Hydrogenation of Fatty Acid Methyl Ester, International Journal of Organic Chemistry, 4, (2014) 219-224 http://doi.org/10.4236/ijoc.2014.44025
  8. Xin Di, Chuang Li, Bingsen Zhang, Ji Qi, Wenzhen Li, Dangsheng Su, Changhai Liang, Role of Re and Ru in Re–Ru/C Bimetallic Catalysts for the Aqueous Hydrogenation of Succinic Acid, Industrial & Engineering Chemistry Research, 56, 16, (2017) 4672-4683 http://doi.org/10.1021/acs.iecr.6b04875
  9. Adriana M. Silva, Onélia A. A. Santos, Marco A. Morales, Elisa M. Baggio-Saitovitch, Elizabete Jordão, Marco A. Fraga, Role of catalyst preparation on determining selective sites for hydrogenation of dimethyl adipate over RuSn/Al2O3, Journal of Molecular Catalysis A: Chemical, 253, 1, (2006) 62-69 https://doi.org/10.1016/j.molcata.2006.03.005
  10. S. A. da S. Corradini, G. G. Lenzi, M. K. Lenzi, C. M. F. Soares, O. A. A. Santos, Characterization and hydrogenation of methyl oleate over Ru/TiO2, Ru–Sn/TiO2 catalysts, Journal of Non-Crystalline Solids, 354, 42, (2008) 4865-4870 https://doi.org/10.1016/j.jnoncrysol.2008.04.040
  11. Esther Bailón-García, Francisco J. Maldonado-Hódar, Agustín F. Pérez-Cadenas, Francisco Carrasco-Marín, Catalysts Supported on Carbon Materials for the Selective Hydrogenation of Citral, Catalysts, 3, 4, (2013) 853-877 https://doi.org/10.3390/catal3040853
  12. Xia Gao, Daming Tong, Heng Zhong, Binbin Jin, Fangming Jin, Hua Zhang, Highly efficient conversion of fatty acids into fatty alcohols with a Zn over Ni catalyst in water, RSC Advances, 6, 33, (2016) 27623-27626 http://doi.org/10.1039/C6RA01150K
  13. Zhicheng Luo, Qiming Bing, Jiechen Kong, Jing-yao Liu, Chen Zhao, Mechanism of supported Ru3Sn7 nanocluster-catalyzed selective hydrogenation of coconut oil to fatty alcohols, Catalysis Science & Technology, 8, 5, (2018) 1322-1332 http://doi.org/10.1039/C8CY00037A
  14. Jan W. Veldsink, Martin J. Bouma, Nils H. Schöön, Antonie A. C. M. Beenackers, Heterogeneous Hydrogenation of Vegetable Oils: A Literature Review, Catalysis Reviews, 39, 3, (1997) 253-318 https://doi.org/10.1080/01614949709353778
  15. Utpal K. Singh, M. Albert Vannice, Kinetics of liquid-phase hydrogenation reactions over supported metal catalysts — a review, Applied Catalysis A: General, 213, 1, (2001) 1-24 https://doi.org/10.1016/S0926-860X(00)00885-1
  16. Rodiansono Rodiansono, Muhammad Iqbal Pratama, Maria Dewi Astuti, Abdullah Abdullah, Agung Nugroho, Susi Susi, Selective Hydrogenation of Dodecanoic Acid to Dodecane-1-ol Catalyzed by Supported Bimetallic Ni-Sn Alloy, Bulletin of Chemical Reaction Engineering & Catalysis, 13, 2, (2018) 311-319 http://doi.org/10.9767/bcrec.13.2.1790.311-319
  17. Sebastian Storck, Helmut Bretinger, Wilhelm F. Maier, Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis, Applied Catalysis A: General, 174, 1, (1998) 137-146 https://doi.org/10.1016/S0926-860X(98)00164-1
  18. Yaping Wan, Wenru Zhao, Yu Tang, Liang Li, Huijun Wang, Yunlong Cui, Jinlou Gu, Yongsheng Li, Jianlin Shi, Ni-Mn bi-metal oxide catalysts for the low temperature SCR removal of NO with NH3, Applied Catalysis B: Environmental, 148-149, (2014) 114-122 https://doi.org/10.1016/j.apcatb.2013.10.049
  19. Lungang Chen, Yulei Zhu, Hongyan Zheng, Chenghua Zhang, Bin Zhang, Yongwang Li, Aqueous-phase hydrodeoxygenation of carboxylic acids to alcohols or alkanes over supported Ru catalysts, Journal of Molecular Catalysis A: Chemical, 351, (2011) 217-227 https://doi.org/10.1016/j.molcata.2011.10.015
  20. De Fang, Feng He, Xiaoqing Liu, Kai Qi, Junlin Xie, Fengxiang Li, Chongqinq Yu, Low temperature NH3-SCR of NO over an unexpected Mn-based catalyst: Promotional effect of Mg doping, Applied Surface Science, 427, (2018) 45-55 https://doi.org/10.1016/j.apsusc.2017.08.088
  21. V. M. Deshpande, K. Ramnarayan, C. S. Narasimhan, Studies on ruthenium-tin boride catalysts II. Hydrogenation of fatty acid esters to fatty alcohols, Journal of Catalysis, 121, 1, (1990) 174-182 https://doi.org/10.1016/0021-9517(90)90227-B
  22. Kenichi Kon, Wataru Onodera, Satoru Takakusagi, Ken-ichi Shimizu, Hydrodeoxygenation of fatty acids and triglycerides by Pt-loaded Nb2O5 catalysts, Catalysis Science & Technology, 4, 10, (2014) 3705-3712 http://doi.org/10.1039/C4CY00757C
  23. O. A. Ferretti, J. P. Bournonville, G. Mabilon, G. Martino, J. P. Candy, J. M. Basset, Surface organometallic chemistry on metals: Part IV. Selective hydrogenation of ethyl acetate to ethanol on RhSn/SiO2 bimetallic catalysts: A mechanistic study, Journal of Molecular Catalysis, 67, 3, (1991) 283-294 https://doi.org/10.1016/0304-5102(91)80040-A
  24. E. S. Vasiliadou, E. Heracleous, I. A. Vasalos, A. A. Lemonidou, Ru-based catalysts for glycerol hydrogenolysis—Effect of support and metal precursor, Applied Catalysis B: Environmental, 92, 1, (2009) 90-99 https://doi.org/10.1016/j.apcatb.2009.07.018
  25. A. Ng K. Lup, F. Abnisa, W. M. A. W. Daud, M. K. Aroua, Acidity, oxophilicity and hydrogen sticking probability of supported metal catalysts for hydrodeoxygenation process, IOP Conference Series: Materials Science and Engineering, 334, (2018) 012074 http://doi.org/10.1088/1757-899x/334/1/012074
  26. Johannes Ullrich, Bernhard Breit, Selective Hydrogenation of Carboxylic Acids to Alcohols or Alkanes Employing a Heterogeneous Catalyst, ACS Catalysis, 8, 2, (2018) 785-789 http://doi.org/10.1021/acscatal.7b03484
  27. Hideyuki Takagi, Takaaki Isoda, Katsuki Kusakabe, Shigeharu Morooka, Effects of Solvents on the Hydrogenation of Mono-Aromatic Compounds Using Noble-Metal Catalysts, Energy & Fuels, 13, 6, (1999) 1191-1196 http://doi.org/10.1021/ef990061m
  28. Mihaela Maris, Wolf-Rüdiger Huck, Tamas Mallat, Alfons Baiker, Palladium-catalyzed asymmetric hydrogenation of furan carboxylic acids, Journal of Catalysis, 219, 1, (2003) 52-58 https://doi.org/10.1016/S0021-9517(03)00184-2

Last update:

  1. Bimetallic Ru-Sn as Effective Catalysts for the Selective Hydrogenation of Biogenic Platform Chemicals at Room Temperature

    Atina Sabila Azzahra, Heny Puspita Dewi, Edi Mikrianto, Kiky Corneliasari Sembiring, Gagus Ketut Sunnardianto, Iryanti Fatyasari Nata, Rodiansono Rodiansono, Jayanudin Jayanudin. Bulletin of Chemical Reaction Engineering & Catalysis, 18 (4), 2023. doi: 10.9767/bcrec.20067
  2. Utilization of Coconut Shell as Cr2O3 Catalyst Support for Catalytic Cracking of Jatropha Oil into Biofuel

    Isalmi Aziz, Yessinta Kurnianti, Nanda Saridewi, Lisa Adhani, Wahyu Permata. Jurnal Kimia Sains dan Aplikasi, 23 (2), 2020. doi: 10.14710/jksa.23.2.39-45

Last update: 2024-04-26 13:12:38

No citation recorded.