Molecular Docking and Chemical Analysis of Alcohol Compounds (C16-C20) Bound to InhA Receptors as Mycobactericidal Candidates

*Muhammad Iqbal Shihab  -  Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University, Indonesia
Gita Syahputra  -  Biotechnology Research Center, Indonesian Institute of Sciences, Indonesia
Received: 24 Oct 2019; Revised: 6 Apr 2020; Accepted: 7 Apr 2020; Published: 31 May 2020.
Open Access Copyright 2020 Jurnal Kimia Sains dan Aplikasi
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Abstract
Tuberculosis (TB) is an infectious disease caused by a bacterium called Mycobacterium tuberculosis. TB infection spreads through the air and is more likely when using inappropriate disinfectants in medical and laboratory equipment related to TB research. Appropriate disinfectants used for laboratory equipment can reduce the risk of TB disease transmission. Alcohol compound is a common disinfectant with broad-spectrum activity against microbes, viruses, and fungi. Molecular Docking can be applied to support virtual receptor-ligand screening in finding the right mycobactericidal agent as a disinfectant candidate from the alcohol group. Based on docking analysis, octadecanol (C18) has potential as a mycobactericidal agent with InhA as its specific receptor. Gibbs (ΔG) free energy obtained by octadecanol (C18) and InhA is -4.9 kcal/mol.
Keywords: tuberculosis; molecular docking; octadecanol (C18); InhA
Funding: Diponegoro University; Indonesian Institute of Sciences

Article Metrics:

  1. D. J. Christopher, P. Daley, L. Armstrong, P. James, R. Gupta, B. Premkumar, J. S. Michael, V. Radha, A. Zwerling, I. Schiller, N. Dendukuri and M. Pai, Tuberculosis infection among young nursing trainees in South India, PLoS One, 5, 4, (2010), e10408 https://doi.org/10.1371/journal.pone.0010408
  2. N. Joel Ehrenkranz and J. Leilani Kicklighter, Tuberculosis Outbreak in a General Hospital: Evidence for Airborne Spread of Infection, Annals of Internal Medicine, 77, 3, (1972), 377-382 https://doi.org/10.7326/0003-4819-77-3-377
  3. A. B. Curtis, R. Ridzon, L. F. Novick, J. Driscoll, D. Blair, M. Oxtoby, M. McGarry, B. Hiscox, C. Faulkner, H. Taber, S. Valway and I. M. Onorato, Analysis of Mycobacterium tuberculosis transmission patterns in a homeless shelter outbreak, The International Journal of Tuberculosis and Lung Disease, 4, 4, (2000), 308-313
  4. David H. Spach, Fred E. Silverstein and Walter E. Stamm, Transmission of Infection by Gastrointestinal Endoscopy and Bronchoscopy, Annals of Internal Medicine, 118, 2, (1993), 117-128 https://doi.org/10.7326/0003-4819-118-2-199301150-00008
  5. William A. Rutala and David J. Weber, Water as a Reservoir of Nosocomial Pathogens, Infection Control & Hospital Epidemiology, 18, 9, (1997), 609-616 https://doi.org/10.2307/30141486
  6. J. N. Dauendorffer, C. Laurain, M. Weber and M. Dailloux, Effect of Methodology on the Tuberculocidal Activity of a Glutaraldehyde-Based Disinfectant, Applied and Environmental Microbiology, 65, 9, (1999), 4239 https://doi.org/10.1128/AEM.65.9.4239-4240.1999
  7. B Van Klingeren and W Pullen, Comparative testing of disinfectants against Mycobacterium tuberculosis and Mycobacterium terrae in a quantitative suspension test, Journal of Hospital Infection, 10, 3, (1987), 292-298 https://doi.org/10.1016/0195-6701(87)90012-0
  8. Patrick J Brennan, Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis, Tuberculosis, 83, 1-3, (2003), 91-97 https://doi.org/10.1016/S1472-9792(02)00089-6
  9. A. D. Russell, Bacterial resistance to disinfectants: present knowledge and future problems, Journal of Hospital Infection, 43, (1999), S57-S68 https://doi.org/10.1016/S0195-6701(99)90066-X
  10. R. Kunz and K. O. Gundermann, Survival of mycobacterium tuberculosis on surfaces at different air-humidities, Zentralbl Bakteriol Mikrobiol Hyg B, 176, 2-3, (1982), 105-115
  11. Celso OR Júnior, Mireille Le Hyaric, Cristiane F da Costa, Taís A Corrêa, Aline F Taveira, Débora P Araújo, Elaine FC Reis, Maria Cristina S Lourenço, Felipe RC Vicente and Mauro V de Almeida, Preparation and antitubercular activity of lipophilic diamines and amino alcohols, Memórias do Instituto Oswaldo Cruz, 104, 5, (2009), 703-705 https://doi.org/10.1590/S0074-02762009000500006
  12. Joseph K. Rugutt and Kipngeno J. Rugutt, Antimycobacterial activity of steroids, long-chain alcohols and lytic peptides, Natural Product Research, 26, 11, (2012), 1004-1011 https://doi.org/10.1080/14786419.2010.539977
  13. Joseph O Falkinham III, Richard V Macri, Bhadreshkumar B Maisuria, Marcelo L Actis, Eko W Sugandhi, AndrÚ A Williams, Alyson V Snyder, Faunice R Jackson, Michael A Poppe and Liang Chen, Antibacterial activities of dendritic amphiphiles against nontuberculous mycobacteria, Tuberculosis, 92, 2, (2012), 173-181 https://doi.org/10.1016/j.tube.2011.12.002
  14. Nadja Kabelitz, Pedro M Santos and Hermann J Heipieper, Effect of aliphatic alcohols on growth and degree of saturation of membrane lipids in Acinetobacter calcoaceticus, FEMS microbiology letters, 220, 2, (2003), 223-227 https://doi.org/10.1016/S0378-1097(03)00103-4
  15. Koushik Mukherjee, Prosun Tribedi, Balaram Mukhopadhyay and Alok Kumar Sil, Antibacterial activity of long-chain fatty alcohols against mycobacteria, FEMS microbiology letters, 338, 2, (2013), 177-183 https://doi.org/10.1111/1574-6968.12043
  16. Elaine L Larson and APIC Guidelines Committee, APIC guidelines for handwashing and hand antisepsis in health care settings, American journal of infection control, 23, 4, (1995), 251-269 https://doi.org/10.1016/0196-6553(95)90070-5
  17. Mary Jackson, Michael R. McNeil and Patrick J. Brennan, Progress in targeting cell envelope biogenesis in Mycobacterium tuberculosis, Future Microbiology, 8, 7, (2013), 855-875 https://doi.org/10.2217/fmb.13.52
  18. Hedia Marrakchi, Gilbert Lanéelle and Annaı̈k Quémard, InhA, a target of the antituberculous drug isoniazid, is involved in a mycobacterial fatty acid elongation system, FAS-II, Microbiology, 146, 2, (2000), 289-296 https://doi.org/10.1099/00221287-146-2-289
  19. Andrea Dessen, Annaik Quemard, John S Blanchard, William R Jacobs and James C Sacchettini, Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis, Science, 267, 5204, (1995), 1638-1641 https://doi.org/10.1126/science.7886450
  20. Asesh Banerjee, Eugenie Dubnau, Annaik Quemard, V Balasubramanian, Kyung Sun Um, Theresa Wilson, Des Collins, Geoffrey De Lisle and William R Jacobs, inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis, Science, 263, 5144, (1994), 227-230 https://doi.org/10.1126/science.8284673
  21. Gisbert Schneider and Uli Fechner, Computer-based de novo design of drug-like molecules, Nature Reviews Drug Discovery, 4, 8, (2005), 649-663 https://doi.org/10.1038/nrd1799
  22. I.M. Kapetanovic, Computer-aided drug discovery and development (CADDD): in silico-chemico-biological approach, Chemico-biological interactions, 171, 2, (2008), 165-176 https://doi.org/10.1016/j.cbi.2006.12.006
  23. Hernán Alonso, Andrey A. Bliznyuk and Jill E. Gready, Combining docking and molecular dynamic simulations in drug design, Medicinal Research Reviews, 26, 5, (2006), 531-568 https://doi.org/10.1002/med.20067
  24. Hongtao Zhao and Amedeo Caflisch, Molecular dynamics in drug design, European journal of medicinal chemistry, 91, (2015), 4-14 https://doi.org/10.1016/j.ejmech.2014.08.004
  25. Usman Sumo Friend Tambunan, Ahmad Husein Alkaff, Mochammad Arfin Fardiansyah Nasution, Arli Aditya Parikesit and Djati Kerami, Screening of commercial cyclic peptide conjugated to HIV-1 Tat peptide as inhibitor of N-terminal heptad repeat glycoprotein-2 ectodomain Ebola virus through in silico analysis, Journal of Molecular Graphics and Modelling, 74, (2017), 366-378 https://doi.org/10.1016/j.jmgm.2017.04.001
  26. Mustafa Hatipoglu, Mesut Mutluoglu, Vedat Turhan, Gunalp Uzun, Benjamin A Lipsky, Erol Sevim, Hayati Demiraslan, Esma Eryilmaz, Cem Ozuguz and Ali Memis, Causative pathogens and antibiotic resistance in diabetic foot infections: a prospective multi-center study, Journal of Diabetes and its Complications, 30, 5, (2016), 910-916 https://doi.org/10.1016/j.jdiacomp.2016.02.013
  27. Gita Syahputra, Wien Kusharyoto Arwansyah and Wien Kusharyoto, Molecular Docking and Molecular Dynamics Study of Alcoholic Compounds as Mycobactericidal Agents using InhA, MabA and PanK as Receptors, Annales Bogorienses Vol, 22, 2, (2018), 101-115 http://dx.doi.org/10.14203/ann.bogor.2018.v22.n2.101-115
  28. Helen M Berman, John Westbrook, Zukang Feng, Gary Gilliland, Talapady N Bhat, Helge Weissig, Ilya N Shindyalov and Philip E Bourne, The protein data bank, Nucleic acids research, 28, 1, (2000), 235-242 https://doi.org/10.1093/nar/28.1.235
  29. Denise A Rozwarski, Catherine Vilchèze, Michele Sugantino, Robert Bittman and James C Sacchettini, Crystal structure of the Mycobacterium tuberculosis enoyl-ACP reductase, InhA, in complex with NAD+ and a C16 fatty acyl substrate, Journal of Biological Chemistry, 274, 22, (1999), 15582-15589 https://doi.org/10.1074/jbc.274.22.15582
  30. Thomas D. Pollard, William C. Earnshaw and Jennifer Lippincott-Schwartz, Cell Biology E-Book, Elsevier Health Sciences, 2007

Last update: 2021-05-16 11:22:08

No citation recorded.

Last update: 2021-05-16 11:22:08

No citation recorded.