1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Halu Oleo University, Indonesia
2Department of Chemistry, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Indonesia
BibTex Citation Data :
@article{JKSA28439, author = {Abdul Watoni and Indra Noviandri and Muhammad Nurdin and La Ode Ahmad Ramadhan}, title = {Electrocoating Polypyrrole on Gold-Wire Electrode as Potential Mediator Membrane Candidate for Anionic Surfactant Electrode Sensor}, journal = {Jurnal Kimia Sains dan Aplikasi}, volume = {23}, number = {5}, year = {2020}, keywords = {polypyrrole; electropolymerization; coated wire electrode; anionic surfactant ISE}, abstract = { The development of polypyrrole as a potential mediator membrane candidate for sodium dodecyl sulfate (SDS) sensor electrode has been investigated. The polypyrrole membrane was synthesized electrochemically from the pyrrole and coated at the surface of a 1.0 mm diameter of the gold-wire electrode. Electropolymerization of pyrrole and coating of the polypyrrole produced was performed by cyclic voltammetry technique in the electrochemical cell containing supporting electrolyte of 0.01 M NaClO 4 with an optimum potential range of -0.9 V–1.0 V, the scanning rate of 100 mV/s, an electric current of 2 mA, and running of potential scanning of 10 cycles. By using the similar optimal parameters of cyclic voltammetry, electropolymerization of 0.01 M pyrrole solution containing 0.001 M SDS also produces a polypyrrole membrane coated at the gold-wire electrode surface. These coated electrodes have the potential response-ability toward DS - anions in the concentration range of 10 -7 M–10 -5 M with a limit of detection of 10 -7 M and sensitivity of electrode of 9.9 mV/decade. This finding shows that the SDS solution’s role is as supporting electrolyte and also as a source of DS - dopant during the pyrrole electropolymerization processes. Dopants are trapped in the polymer membrane during the electrochemical formation of polypyrrole and role as ionophores for DS - anion in the analyte solution. A potential response to the electrode phenomena is excellent basic scientific information for further synthesis of conducting polymer and development of conducting polymer-coated wire electrode model, especially in the construction of ion-selective electrode (ISE) for the determination of anionic surfactants with those models. }, issn = {2597-9914}, pages = {167--176} doi = {10.14710/jksa.23.5.167-176}, url = {https://ejournal.undip.ac.id/index.php/ksa/article/view/28439} }
Refworks Citation Data :
The development of polypyrrole as a potential mediator membrane candidate for sodium dodecyl sulfate (SDS) sensor electrode has been investigated. The polypyrrole membrane was synthesized electrochemically from the pyrrole and coated at the surface of a 1.0 mm diameter of the gold-wire electrode. Electropolymerization of pyrrole and coating of the polypyrrole produced was performed by cyclic voltammetry technique in the electrochemical cell containing supporting electrolyte of 0.01 M NaClO4 with an optimum potential range of -0.9 V–1.0 V, the scanning rate of 100 mV/s, an electric current of 2 mA, and running of potential scanning of 10 cycles. By using the similar optimal parameters of cyclic voltammetry, electropolymerization of 0.01 M pyrrole solution containing 0.001 M SDS also produces a polypyrrole membrane coated at the gold-wire electrode surface. These coated electrodes have the potential response-ability toward DS- anions in the concentration range of 10-7 M–10-5 M with a limit of detection of 10-7 M and sensitivity of electrode of 9.9 mV/decade. This finding shows that the SDS solution’s role is as supporting electrolyte and also as a source of DS- dopant during the pyrrole electropolymerization processes. Dopants are trapped in the polymer membrane during the electrochemical formation of polypyrrole and role as ionophores for DS- anion in the analyte solution. A potential response to the electrode phenomena is excellent basic scientific information for further synthesis of conducting polymer and development of conducting polymer-coated wire electrode model, especially in the construction of ion-selective electrode (ISE) for the determination of anionic surfactants with those models.
Article Metrics:
Last update:
Synthesis and Characterization of a Polypyrrole-Based Molecularly Imprinted Polymer Electrochemical Sensor for the Selective Detection of Phosphate Ion
Synthesis of conductive polymeric nanoparticles with hyaluronic acid based bioactive stabilizers for biomedical applications
Last update: 2024-11-20 04:04:02
As an article writer, the author has the right to use their articles for various purposes, including use by institutions that employ authors or institutions that provide funding for research. Author rights are granted without special permission.
Author who publishes a paper at JKSA has the broad right to use their work for teaching and scientific purposes without the need to ask permission, including: used for (i) teaching in the author's class or institution, (ii) presentation at meetings or conferences and distributing copies to participants ; (iii) training conducted by the author or author's institution; (iv) distribution to colleagues for research use; (v) use in the compilation of subsequent authors' works; (vi) inclusion in a thesis or dissertation; (vi) reuse of part of the article in another work (with citation); (vii) preparation of derivative works (with citation); (viii) voluntary posting on open websites operated by authors or author institutions for scientific purposes (follow the CC BY-SA License).
Authors and readers can copy and redistribute material in any media or format, and mix, modify, and build material for any purpose but they must provide appropriate credit (provide article citation or content), providing links to the license, and indicate if there are changes.
The authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Jurnal Kimia Sains dan Aplikasi (JKSA). Copyright encompasses rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms and any other similar reproductions, as well as translations.
Reproduce any part of this journal, its storage in the database or its transmission by all forms or media is permitted does not need for written permission from JKSA. However, it should be cited as an honor in academic manners
JKSA and the Chemistry Department of Diponegoro University and the Editor make every effort to ensure that there are no data, opinions, or false or misleading statements published in JKSA. However, the content of the article is the sole and exclusive responsibility of each author.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form - Indonesian] [Copyright Transfer Form - English]. The copyright form should be signed originally and send to the Editor in the form of printed letters, scanned documents sent via email or fax.
Adi Darmawan, Ph.D (Editor in Chief)
Editor in chief of Jurnal Kimia Sains dan Aplikasi (JKSA)
Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University
Visitor: View My Stats
Jurnal Kimia Sains dan Aplikasi is indexed in:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.