skip to main content

A Compatibility in the Single Cell of the NiO/LSGM/LSCF

1Chemistry Department, Faculty of Mathematics and Science, Universitas Padjadjaran, Indonesia

2National Nuclear Energy Agency Indonesia (PSTNT)-BATAN, Indonesia

Received: 23 Jul 2020; Revised: 21 Oct 2020; Accepted: 27 Oct 2020; Published: 31 Oct 2020.
Open Access Copyright 2020 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

The compatibility between anode, electrolyte, and cathode in a solid fuel cell determines its performance. Research on the compatibility between fuel cell components is challenging, especially for SOFCs that operate at high temperatures. Therefore, efforts to reduce the operating temperature to become intermediate temperature SOFC (IT-SOFC) are essential to facilitate compatibility between its components. La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) has been recognized as one of the most promising cathode materials for (IT-SOFC) due to its high electronic conductivity and excellent electrical performance. While La0.8Sr0.2Ga0.8Mg0.2O3–δ (LSGM) has a high oxygen ion conductivity at low temperatures, its chemical stability is still not good. LSGM is known to have interface reactivity with other components such as NiO and LSCF in fuel cells. This study looked at the compatibility of NiO/LSGM/LSCF cells prepared by the solid chemical synthesis method. Compatibility evaluation is determined by the Thermal Expansion Coefficient (TEC) parameter using the dilatometric method, Area Specific Resistance (ASR), and TBF area morphology by Scanning Electron Microscope-Energy Dispersive Spectroscopy (SEM-EDS). While the conductivity of the cells is determined by Electrochemical Impedance Spectroscopy (EIS). NiO/LSGM/LSCF cells have good compatibility with a value of 78.05 kg-1.K.A.s32 at a temperature of 600°C. The ASR values of cells tend to decrease with increasing temperature and conductivity values at small TEC values. Based on these parameter values, delamination in NiO/LSGM/LSCF cells did not occur.

Fulltext View|Download
Keywords: ASR; SOFC; single cell; NiO/LSGM/LSCF; compatibility parameter
Funding: Dikti melalui Hibah Penelitian Dasar Unggulan Perguruan Tinggi No. 1827/UN6.3.1/LT/2020. Penelitian ini di support oleh Laboratorium Kimia Fisik-Anorganik dan PSTNT-BATAN.

Article Metrics:

  1. Pengfei Zhu, Jing Yao, Chenhui Qian, Fusheng Yang, Ekambaram Porpatham, Zaoxiao Zhang, Zhen Wu, High-efficiency conversion of natural gas fuel to power by an integrated system of SOFC, HCCI engine, and waste heat recovery: Thermodynamic and thermo-economic analyses, Fuel, 275, (2020), 117883 https://doi.org/10.1016/j.fuel.2020.117883
  2. David M. Bastidas, Shanwen Tao, John T. S. Irvine, A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes, Journal of Materials Chemistry, 16, 17, (2006), 1603-1605 http://dx.doi.org/10.1039/B600532B
  3. F. Ramadhani, M. A. Hussain, H. Mokhlis, S. Hajimolana, Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey, Renewable and Sustainable Energy Reviews, 76, (2017), 460-484 https://doi.org/10.1016/j.rser.2017.03.052
  4. Kevin Huang, John B. Goodenough, Solid Oxide Fuel Cell Technology: Principles, Performance and Operations, Elsevier Science, Cambridge, 2009
  5. Atiek Rostika Noviyanti, Ferli S. Irwansyah, Sahrul Hidayat, Arie Hardian, Dani Gustaman Syarif, Yati B. Yuliyati, Iwan Hastiawan, Preparation and conductivity of composite apatite La9.33Si6O26 (LSO)-Zr0.85Y0.15O1.925 (YSZ), AIP Conference Proceedings, 1712, 1, (2016), 050002 https://doi.org/10.1063/1.4941885
  6. Changsing Hwang, Chun-Huang Tsai, Chih-Hung Lo, Cha-Hong Sun, Plasma sprayed metal supported YSZ/Ni–LSGM–LSCF ITSOFC with nanostructured anode, Journal of Power Sources, 180, 1, (2008), 132-142 https://doi.org/10.1016/j.jpowsour.2008.01.075
  7. Atiek Rostika Noviyanti, Diana Rakhmawaty Eddy, Annisa Anshari, Synthesis of the Bi-doped Apatite-type Phases La10-xBixSi6O27 (x= 0.5, and 1) by Hydrothermal Method, Procedia Chemistry, 17, (2015), 16-20 https://doi.org/10.1016/j.proche.2015.12.111
  8. Atiek Rostika Noviyanti, Bambang Prijamboedi, I. Nyoman Marsih, Rino R. Mukti, Ismunandar, Conductivity and solid state 29Si NMR studies of apatite-type lanthanum silicate prepared by hydrothermal method, 2nd International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering, Bandung, Indonesia, 2011 https://doi.org/10.1109/ICICI-BME.2011.6108653
  9. Atiek Rostika Noviyanti, Nur Akbar, Iwan Hastiawan, Iman Rahayu, Yoga Trianzar Malik, Bi Doping Effect on the Conductivity of Lanthanum Silicate Apatite, Materials Science Forum, 2019 https://doi.org/10.4028/www.scientific.net/MSF.966.451
  10. A. R. Noviyanti, D. R. Eddy, F. Lastiyanti, I. Rahayu, D. G. Syarif, T. Saragi, Risdiana, Synthesis and conductivities of the Ti-doped apatite-type phases La9.33Si6-xTixO26, Journal of Physics: Conference Series, 1080, (2018), 012018 http://dx.doi.org/10.1088/1742-6596/1080/1/012018
  11. Atiek Rostika Noviyanti, Iwan Hastiawan, Yati B. Yuliyati, Iman Rahayu, Desy Rosyani, Dani Gustaman Syarif, LSO apatite-YSZ composite as a solid electrolyte for solid oxide fuel cells, AIP Conference Proceedings, 1848, 1, (2017), 040001 https://doi.org/10.1063/1.4983939
  12. Yoga Trianzar Malik, Atiek Rostika Noviyanti, Putri Rizka Lestari, Thermomechanical Analysis of Various Solid-oxide-fuel-cell Components Using Simple Analog Micrometer Measurements, Makara Journal of Science, 24, 1, (2020), 17-23 https://doi.org/10.7454/mss.v24i1.11725
  13. Alexander Sobolev, Paz Stein, Konstantin Borodianskiy, Synthesis and characterization of NiO colloidal ink solution for printing components of solid oxide fuel cells anodes, Ceramics International, 46, 16, Part A, (2020), 25260-25265 https://doi.org/10.1016/j.ceramint.2020.06.318
  14. Jie Zhu, Guolin Cao, Yunjiao Li, Xiaoming Xi, Zhuomin Jin, Bin Xu, Wei Li, Efficient utilisation of rod-like nickel oxalate in lithium-ion batteries: A case of NiO for the anode and LiNiO2 for the cathode, Scripta Materialia, 178, (2020), 51-56 https://doi.org/10.1016/j.scriptamat.2019.10.051
  15. Baoan Fan, Jiabao Yan, Xiaochao Yan, The ionic conductivity, thermal expansion behavior, and chemical compatibility of La0.54Sr0.44Co0.2Fe0.8O3-δ as SOFC cathode material, Solid State Sciences, 13, 10, (2011), 1835-1839 https://doi.org/10.1016/j.solidstatesciences.2011.07.007
  16. H. A. Taroco, J. A. F. Santos, R. Z. Domingues, T. Matencio, Ceramic materials for solid oxide fuel cells, in: Advances in ceramics-Synthesis and Characterization, processing and specific applications, 2011, https://doi.org/10.5772/18297
  17. Yoichi Endo, Kazuya Sasaki, Akihiro Suzuki, Takayuki Terai, Performance of anode microstructure controlled Ni-ScSZ/LSGM/LSCF-Ag SOFCs by low temperature fabrication process, ECS Transactions, 35, 1, (2011), 615 https://doi.org/10.1149/1.3570040
  18. Ludger Blum, An Analysis of Contact Problems in Solid Oxide Fuel Cell Stacks Arising from Differences in Thermal Expansion Coefficients, Electrochimica Acta, 223, (2017), 100-108 https://doi.org/10.1016/j.electacta.2016.12.016
  19. Fangjun Jin, Jincheng Liu, Yu Shen, Tianmin He, Improved electrochemical performance and thermal expansion compatibility of LnBaCoFeO5+δ–Sm0.2Ce0.8O1.9 (LnPr and Nd) composite cathodes for IT-SOFCs, Journal of Alloys and Compounds, 685, (2016), 483-491 https://doi.org/10.1016/j.jallcom.2016.05.322
  20. Michał Mosiałek, Aneta Michna, Małgorzata Dziubaniuk, Elżbieta Bielańska, Algimantas Kežionis, Tomas Šalkus, Edvardas Kazakevičius, Barbara Bożek, Aneta Krawczyk, Jan Wyrwa, Antanas Feliksas Orliukas, Composite cathode material LSCF-Ag for solid oxide fuel cells obtained in one step sintering procedure, Electrochimica Acta, 282, (2018), 427-436 https://doi.org/10.1016/j.electacta.2018.06.063
  21. Francisco J. A. Loureiro, Daniel A. Macedo, Rubens M. Nascimento, Moisés R. Cesário, João P. F. Grilo, Aleksey A. Yaremchenko, Duncan P. Fagg, Cathodic polarisation of composite LSCF-SDC IT-SOFC electrode synthesised by one-step microwave self-assisted combustion, Journal of the European Ceramic Society, 39, 5, (2019), 1846-1853 https://doi.org/10.1016/j.jeurceramsoc.2019.01.013
  22. Yoga Trianzar Malik, Atiek Rostika Noviyanti, Dani Gustaman Syarif, Lowered Sintering Temperature on Synthesis of La9.33Si6O26 (LSO) – La0.8Sr0.2Ga0.8Mg0.2O2.55 (LSGM) Electrolyte Composite and the Electrical Performance on La0.7Ca0.3MnO3 (LCM) Cathode, Jurnal Kimia Sains dan Aplikasi, 21, 4, (2018), 205-210 https://doi.org/10.14710/jksa.21.4.205-210
  23. Yoga Trianzar Malik, Atiek Rostika Noviyanti, Nur Akbar, Iwan Hastiawan, Togar Saragi, Structure, chemical stability and magnetic properties of lanthanum silicate oxide apatite synthesized by hydrothermal method, Materials Science Forum, 2019 https://doi.org/10.4028/www.scientific.net/MSF.966.415
  24. S. W. Tao, J. T. S. Irvine, J. A. Kilner, An Efficient Solid Oxide Fuel Cell Based upon Single-Phase Perovskites, Advanced Materials, 17, 14, (2005), 1734-1737 https://doi.org/10.1002/adma.200402007
  25. O. Madelung, U. Rössler, M. Schulz, NiO: lattice parameter, thermal expansion, in: Landolt-Börnstein-Group III Condensed Matter 41D, Non-Tetrahedrally Bonded Binary Compounds II, SpringerMaterials, Berlin Heidelberg, 2000, https://doi.org/10.1007/10681735_510
  26. Gwenaël Corbel, Samih Mestiri, Philippe Lacorre, Physicochemical compatibility of CGO fluorite, LSM and LSCF perovskite electrode materials with La2Mo2O9 fast oxide-ion conductor, Solid State Sciences, 7, 10, (2005), 1216-1224 https://doi.org/10.1016/j.solidstatesciences.2005.05.007
  27. Jing Chen, Dongjin Wan, Xuzhuo Sun, Bo Li, Interpretation of an inductive loop in the impedance of the impregnated La0.6Sr0.4Co0.2Fe0.8O3-δ-Y2O3 stabilized ZrO2 cathodes, Journal of Electroanalytical Chemistry, 818, (2018), 231-235 https://doi.org/10.1016/j.jelechem.2018.04.032

Last update:

  1. Electrochemical properties of La9.33Si6O26(LSO)–La0.8Sr0.2Ga0.8Mg0.2O2.55(LSGM) electrolyte over NiO and La0.1Ca0.9MnO3(LCM) electrodes

    Atiek Rostika Noviyanti, Yoga Trianzar Malik, Iman Rahayu, Diana Rakhmawaty Eddy, Uji Pratomo. Materials Research Express, 8 (11), 2021. doi: 10.1088/2053-1591/ac3bf9
  2. Effect of Bi doping on the electrochemical behaviour of Mg2SiO4 nanoparticle for energy storage applications

    B. Karthikeyan, A. Sakthivel, P. Senthil Kumar, Shamima Hussain. Surfaces and Interfaces, 51 , 2024. doi: 10.1016/j.surfin.2024.104609
  3. SPS preparation of La10Si6O27 and the effect of sintering temperature on electrical conductivity

    Zhiwei Peng, Xiaoming Sun, Ye Han, Xiangnan Wang. Journal of Alloys and Compounds, 960 , 2023. doi: 10.1016/j.jallcom.2023.170774
  4. Microstructure and electrical conductivity of La10Si6O27–La0.9Sr0.1Ga0.8Mg0.2O2.85 composite electrolytes for SOFCs

    Cui Qiao, Jie Yu, Shu-qiu Hu, Xin Ding, Wei-tian Yang, Shao-yuan Li, Guo-qiang Lv, Wen-hui Ma. Ceramics International, 50 (2), 2024. doi: 10.1016/j.ceramint.2023.11.118

Last update: 2024-11-18 06:41:46

No citation recorded.