skip to main content

Antimalarial Activity of Sea Sponge Extract of Stylissa massa originating from waters of Rote Island

1Chemistry Study Program, Faculty of Agriculture, University of Timor, Kefamenanu, Timor Tengah Utara, Indonesia

2Department of Chemistry, Faculty of Mathematics and Natural Sciences, Gadjah Mada University, Yogyakarta, Indonesia

3Biology Study Program, Faculty of Agriculture, University of Timor, Kefamenanu, Timor Tengah Utara, Indonesia

Received: 18 Sep 2020; Revised: 14 Mar 2021; Accepted: 23 Mar 2021; Published: 30 Apr 2021.
Open Access Copyright 2021 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract
Research on the isolation, toxicity test, antimalarial test, and identification of the active compound from the ethyl acetate fraction of Stylissa massa sponge from Oenggae waters, Rote Island, has been conducted. This study aimed to investigate the antimalarial activity of the ethyl acetate fraction of the Stylissa massa sponge. Isolation was carried out by the extraction method using a mixed solvent of methanol: dichloromethane of 3: 2 (v/v), then the extract was partitioned in a solvent mixture of ethyl acetate: water of 1: 2 (v/v). The ethyl acetate extract obtained was separated by column chromatography using the gradient polarity system method. The toxicity test of each fraction was carried out by the Brine Shrimp Lethality Test (BSLT) method, and the antimalarial test was carried out by the haematin polymerization inhibition method. Identification of compounds from the active fraction in the antimalarial test was carried out using Liquid Chromatography-Mass Spectrometry (LC-MS). The extraction yield was 1.14 g (0.23%) of the ethyl acetate extract in the form of a dark brownish-yellow oily solid. Separation by column chromatography resulted in 15 fractions. Toxicity test results showed the four most active fractions with LC50 values, which are very promising for new drug discovery. The IC50 value in the antimalarial activity test of the four fractions indicated that the Stylissa massa sponge ethyl acetate extract was more active than the standard chloroquine compound (115 μg/mL). The LC-MS analysis indicates that fraction 11 contains two compounds that have been reported, and 1 compound is unknown. In contrast, fraction 14 indicates that it contains three compounds that have been reported and one unknown compound.
Fulltext View|Download
Keywords: Stylissa massa; marine natural product; antimalarial; Brine Shrimp Lethality Test; sponge

Article Metrics:

  1. World Health Organization, World Malaria Report 2019, World Health Organization, Geneva, 2019
  2. Penta Ashok, Swastika Ganguly, Sankaranarayanan Murugesan, Manzamine alkaloids: isolation, cytotoxicity, antimalarial activity and SAR studies, Drug Discovery Today, 19, 11, (2014), 1781-1791 https://doi.org/10.1016/j.drudis.2014.06.010
  3. Fan Yang, Ru-Ping Wang, Bin Xu, Hao-Bing Yu, Guo-Yi Ma, Guang-Fei Wang, Shu-Wen Dai, Wei Zhang, Wei-Hua Jiao, Shao-Jiang Song, Hou-Wen Lin, New antimalarial norterpene cyclic peroxides from Xisha Islands sponge Diacarnus megaspinorhabdosa, Bioorganic & Medicinal Chemistry Letters, 26, 8, (2016), 2084-2087 https://doi.org/10.1016/j.bmcl.2016.02.070
  4. Min Xu, Kathy T. Andrews, Geoff W. Birrell, Truc Linh Tran, David Camp, Rohan A. Davis, Ronald J. Quinn, Psammaplysin H, a new antimalarial bromotyrosine alkaloid from a marine sponge of the genus Pseudoceratina, Bioorganic & Medicinal Chemistry Letters, 21, 2, (2011), 846-848 https://doi.org/10.1016/j.bmcl.2010.11.081
  5. Rohan A. Davis, Malcolm S. Buchanan, Sandra Duffy, Vicky M. Avery, Susan A. Charman, William N. Charman, Karen L. White, David M. Shackleford, Michael D. Edstein, Katherine T. Andrews, David Camp, Ronald J. Quinn, Antimalarial Activity of Pyrroloiminoquinones from the Australian Marine Sponge Zyzzya sp, Journal of Medicinal Chemistry, 55, 12, (2012), 5851-5858 https://doi.org/10.1021/jm3002795
  6. R. W. M. Van Soest, N. Boury-Esnault, J. N. A. Hooper, K. Rützler, N. J. de Voogd, B. Alvarez, E. Hajdu, A. B. Pisera, R. Manconi, C. Schönberg, M. Klautau, M. Kelly, J. Vacelet, M. Dohrmann, M.-C. Díaz, P. Cárdenas, J. L. Carballo, P. Ríos, R. Downey, C. C. Morrow, World Porifera Database, 2021
  7. Masaki Kita, Baro Gise, Atsushi Kawamura, Hideo Kigoshi, Stylissatin A, a cyclic peptide that inhibits nitric oxide production from the marine sponge Stylissa massa, Tetrahedron Letters, 54, 50, (2013), 6826-6828 https://doi.org/10.1016/j.tetlet.2013.10.003
  8. Michitaka Yamaguchi, Mitsue Miyazaki, Matthew P. Kodrasov, Henki Rotinsulu, Fitje Losung, Remy E. P. Mangindaan, Nicole J. de Voogd, Hideyoshi Yokosawa, Benjamin Nicholson, Sachiko Tsukamoto, Spongiacidin C, a pyrrole alkaloid from the marine sponge Stylissa massa, functions as a USP7 inhibitor, Bioorganic & Medicinal Chemistry Letters, 23, 13, (2013), 3884-3886 https://doi.org/10.1016/j.bmcl.2013.04.066
  9. Jingyuan Sun, Wei Cheng, Nicole J. de Voogd, Peter Proksch, Wenhan Lin, Stylissatins B–D, cycloheptapeptides from the marine sponge Stylissa massa, Tetrahedron Letters, 57, 38, (2016), 4288-4292 https://doi.org/10.1016/j.tetlet.2016.08.024
  10. Deniz Tasdemir, Robert Mallon, Michael Greenstein, Larry R. Feldberg, Steven C. Kim, Karen Collins, Donald Wojciechowicz, Gina C. Mangalindan, Gisela P. Concepción, Mary Kay Harper, Chris M. Ireland, Aldisine Alkaloids from the Philippine Sponge Stylissa massa Are Potent Inhibitors of Mitogen-Activated Protein Kinase Kinase-1 (MEK-1), Journal of Medicinal Chemistry, 45, 2, (2002), 529-532 https://doi.org/10.1021/jm0102856
  11. Samuel Jacob Inbaneson, Sundaram Ravikumar, In vitro antiplasmodial activity of marine sponge Stylissa carteri associated bacteria against Plasmodium falciparum, Asian Pacific Journal of Tropical Disease, 2, 5, (2012), 370-374 https://doi.org/10.1016/S2222-1808(12)60081-4
  12. Q. Fardiyah, Suprapto, F. Kurniawan, T. Ersam, A. Slamet, Suyanta, Preliminary Phytochemical Screening and Fluorescence Characterization of Several Medicinal Plants Extract from East Java Indonesia, IOP Conference Series: Materials Science and Engineering, 833, (2020), 012008 https://doi.org/10.1088/1757-899X/833/1/012008
  13. B. N. Meyer, N. R. Ferrigni, J. E. Putnam, L. B. Jacobsen, D. E. Nichols, J. L. McLaughlin, Brine Shrimp: A Convenient General Bioassay for Active Plant Constituents, Planta Med, 45, 05, (1982), 31-34 https://doi.org/10.1055/s-2007-971236
  14. Chao Wu, An important player in brine shrimp lethality bioassay: The solvent, Journal of Advanced Pharmaceutical Technology & Research, 5, 1, (2014), 57-58
  15. N. Basilico, E. Pagani, D. Monti, P. Olliaro, D. Taramelli, A microtitre-based method for measuring the haem polymerization inhibitory activity (HPIA) of antimalarial drugs, Journal of Antimicrobial Chemotherapy, 42, 1, (1998), 55-60 https://doi.org/10.1093/jac/42.1.55
  16. Dhina Fitriastuti, Muhammad Idham Darussalam Mardjan, Jumina Jumina, Mustofa Mustofa, Synthesis and heme polymerization inhibitory activity (HPIA) assay of antiplasmodium of (1)-N-(3, 4-dimethoxybenzyl)-1, 10-phenanthrolinium bromide from vanillin, Indonesian Journal of Chemistry, 14, 1, (2014), 1-6 https://doi.org/10.22146/ijc.21260
  17. Naphatson Chanthathamrongsiri, Supreeya Yuenyongsawad, Chatchai Wattanapiromsakul, Anuchit Plubrukarn, Bifunctionalized Amphilectane Diterpenes from the Sponge Stylissa cf. massa, Journal of Natural Products, 75, 4, (2012), 789-792 https://doi.org/10.1021/np200959j
  18. Omar Abdulhameed Almazroo, Mohammad Kowser Miah, Raman Venkataramanan, Drug Metabolism in the Liver, Clinics in Liver Disease, 21, 1, (2017), 1-20 https://doi.org/10.1016/j.cld.2016.08.001
  19. R. Baelmans, E. Deharo, V. Muñoz, M. Sauvain, H. Ginsburg, Experimental Conditions for Testing the Inhibitory Activity of Chloroquine on the Formation of β-Hematin, Experimental Parasitology, 96, 4, (2000), 243-248 https://doi.org/10.1006/expr.2000.4558
  20. Malcolm S. Buchanan, Anthony R. Carroll, Ronald J. Quinn, Revised structure of palau’amine, Tetrahedron Letters, 48, 26, (2007), 4573-4574 https://doi.org/10.1016/j.tetlet.2007.04.128
  21. Robin B. Kinnel, Henning Peter Gehrken, Paul J. Scheuer, Palau'amine: a cytotoxic and immunosuppressive hexacyclic bisguanidine antibiotic from the sponge Stylotella agminata, Journal of the American Chemical Society, 115, 8, (1993), 3376-3377 https://doi.org/10.1021/ja00061a065
  22. Ian B. Seiple, Shun Su, Ian S. Young, Chad A. Lewis, Junichiro Yamaguchi, Phil S. Baran, Total Synthesis of Palau’amine, Angewandte Chemie International Edition, 49, 6, (2010), 1095-1098 https://doi.org/10.1002/anie.200907112
  23. Kosuke Namba, Kohei Takeuchi, Yukari Kaihara, Masataka Oda, Akira Nakayama, Atsushi Nakayama, Masahiro Yoshida, Keiji Tanino, Total synthesis of palau’amine, Nature Communications, 6, 1, (2015), 8731 https://doi.org/10.1038/ncomms9731
  24. G. Cimino, S. De Rosa, S. De Stefano, L. Mazzarella, R. Puliti, G. Sodano, Isolation and X-ray crystal structure of a novel bromo-compound from two marine sponges, Tetrahedron Letters, 23, 7, (1982), 767-768 https://doi.org/10.1016/S0040-4039(00)86943-9
  25. Vasudha Sharma, Theresa A. Lansdell, Guangyi Jin, Jetze J. Tepe, Inhibition of Cytokine Production by Hymenialdisine Derivatives, Journal of Medicinal Chemistry, 47, 14, (2004), 3700-3703 https://doi.org/10.1021/jm040013d
  26. Rahman Shah Zaib Saleem, Jetze J. Tepe, A concise total synthesis of hymenialdisine, Tetrahedron Letters, 56, 23, (2015), 3011-3013 https://doi.org/10.1016/j.tetlet.2014.10.022
  27. Dan qing Feng, Yan Qiu, Wei Wang, Xiang Wang, Peng gang Ouyang, Cai huan Ke, Antifouling activities of hymenialdisine and debromohymenialdisine from the sponge Axinella sp, International Biodeterioration & Biodegradation, 85, (2013), 359-364 https://doi.org/10.1016/j.ibiod.2013.08.014
  28. Francesco Cafieri, Ernesto Fattorusso, Orazio Taglialatela-Scafati, Ectyoplasides A–B – Unique Triterpene Oligoglycosides from the Caribbean Sponge Ectyoplasia ferox, European Journal of Organic Chemistry, 1999, 1, (1999), 231-238 https://doi.org/10.1002/(SICI)1099-0690(199901)1999:1<231::AID-EJOC231>3.0.CO;2-U
  29. Masashi Tsuda, Hideyuki Shigemori, Yuzuru Mikami, Jun'ichi Kobayashi, Hymenamides C ~ E, new cyclic heptapeptides with two proline residues from the okinawan marine sponge hymeniacidon sp, Tetrahedron, 49, 31, (1993), 6785-6796 https://doi.org/10.1016/S0040-4020(01)80422-1
  30. Masashi Tsuda, Takuma Sasaki, Jun'ichi Kobayashi, Hymenamides G, H, J, and K, four new cyclic octapeptides from the Okinawan marine sponge Hymeniacidon sp, Tetrahedron, 50, 16, (1994), 4667-4680 https://doi.org/10.1016/S0040-4020(01)85006-7

Last update:

No citation recorded.

Last update: 2024-11-12 01:25:35

No citation recorded.