skip to main content

Bandgap Energy of TiO₂/M-Chlorophyll Material (M=Cu²⁺, Fe³⁺)

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Tanjungpura University, Pontianak, Indonesia

Received: 9 Mar 2021; Revised: 18 Apr 2021; Accepted: 30 Apr 2021; Published: 30 Apr 2021.
Open Access Copyright 2021 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract
The bandgap energy (Egap) of TiO2 material modified with metal-chlorophyll complex compounds (M = Cu2+, Fe3+) was observed. Chlorophyll (Chl) was isolated from cassava leaves, and its UV-Vis spectra showed absorption peaks in the Soret band region (410 nm) and in the Q band region (665 nm), which is the typical peak of chlorophyll. Copper(II)-chlorophyll complex was prepared from the reaction between chlorophyll and CuSO4.5H2O, while the iron(III)-chlorophyll was synthesized from chlorophyll and FeCl3.6H2O in methanol solvent under reflux at 65°C. The presence of copperand iron metals in the chlorophyll metal complexes was identified using Atomic Absorption Spectroscopy in methanol solution. The absorption of copper measured in Cu2+-Chl was 0.0488 (0.4805 mg/L), while the iron atom in Fe3+-Chl was 0.0050 (0.0195 mg/L). The UV-vis spectra demonstrate the hypsochromic shift of the Soret band to 405 nm (Cu2+-Chl) and 402 nm (Fe3+-Chl). The Infrared spectra of chlorophyll after being complexed with copper(II) shows the increase of vibrational absorption wavenumber of the C=N group from 1225.06 cm-1 to 1241.94 cm-1 indicates the coordination of the metal ion on the N atom in the pyrrole ring. The shift in the absorption band on the Fe3+-Chl spectrum was seen for the C=O ester group from 1720.49 cm-1 to 1721.10 cm-1 indicating the metal ion bonding in the C=O group of esters. The DR-UVis analysis of TiO2/metal-chlorophyll shows a bathochromic shift towards the visible light region. By using the Tauc plot method, it was observed that the Egap of TiO2 reduces from 3.08 eV to 2.89 eV and 2.93 eV in the compound of TiO2/Cu2+-Chl and TiO2/Fe3+-Chl, respectively.
Fulltext View|Download
Keywords: chlorophyll; Cu2+-chlorophyll complex; Fe3+-chlorophyll complex; Tauc plot method; bandgap energy

Article Metrics:

  1. Michael Grätzel, Dye-sensitized solar cells, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 4, 2, (2003), 145-153 https://doi.org/10.1016/S1389-5567(03)00026-1
  2. Jelena Petrovic, Goran Nikolic, Dejan Markovic, In vitro complexes of copper and zinc with chlorophyll, Journal of the Serbian Chemical Society, 71, 5, (2006), 501-512 http://dx.doi.org/10.2298/JSC0605501P
  3. Sergey V. Gaponenko, Pierre-Michel Adam, Dmitry V. Guzatov, Alina O. Muravitskaya, Possible nanoantenna control of chlorophyll dynamics for bioinspired photovoltaics, Scientific Reports, 9, 1, (2019), 7138 https://doi.org/10.1038/s41598-019-43545-4
  4. Zainal Arifin, Sudjito Soeparman, Denny Widhiyanuriyawan, Suyitno Suyitno, Argatya Tara Setyaji, Improving Stability of Chlorophyll as Natural Dye for Dye-Sensitized Solar Cells, Jurnal Teknologi, 80, 1, (2017), 27-33 https://doi.org/10.11113/jt.v80.10258
  5. M. Ridwan, E. Noor, Mohd Shahrizal Rusli, Akhiruddin, Fabrication of dye-sensitized solar cell using chlorophylls pigment from sargassum, IOP Conference Series: Earth and Environmental Science, 144, (2018), 012039 https://doi.org/10.1088/1755-1315/144/1/012039
  6. Brian O'Regan, Michael Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353, 6346, (1991), 737-740 https://doi.org/10.1038/353737a0
  7. Xiliang Nie, Su-Huai Wei, S. B. Zhang, First-principles study of transparent p-type conductive SrCu2O2 and related compounds, Physical Review B, 65, 7, (2002), 075111 https://doi.org/10.1103/PhysRevB.65.075111
  8. Gladis Pedroza-Herrera, Iliana E. Medina-Ramírez, Juan Antonio Lozano-Álvarez, Sandra E. Rodil, Evaluation of the Photocatalytic Activity of Copper Doped TiO2 nanoparticles for the Purification and/or Disinfection of Industrial Effluents, Catalysis Today, 341, (2020), 37-48 https://doi.org/10.1016/j.cattod.2018.09.017
  9. Trang Nguyen Thi Thu, Nhiem Nguyen Thi, Vinh Tran Quang, Khanh Nguyen Hong, Tan Nguyen Minh, Nam Le Thi Hoai, Synthesis, characterisation, and effect of pH on degradation of dyes of copper-doped TiO2, Journal of Experimental Nanoscience, 11, 3, (2016), 226-238 https://doi.org/10.1080/17458080.2015.1053541
  10. Amir Abidov, Bunyod Allabergenov, Oybek Tursunkulov, Lili He, Beom-Hyeok Park, Hee-Joon Kim, Sungjin Kim, Methanol Artificial Photosynthesis Using Iron Doped TiO2, Journal of Biobased Materials and Bioenergy, 8, 2, (2014), 165-169 https://doi.org/10.1166/jbmb.2014.1429
  11. Amir Abidov, Bunyod Allabergenov, Jeonghwan Lee, Heung-Woo Jeon, Soon-Wook Jeong, Sungjin Kim, X-Ray Photoelectron Spectroscopy Characterization of Fe Doped TiO2 Photocatalyst, International Journal of Materials, Mechanics and Manufacturing, 1, (2013), 294-296 https://doi.org/10.7763/ijmmm.2013.v1.63
  12. Rita Prasetyowati, Laila Katriani, Yunita Ambarwati, Studi Preparasi dan Karakterisasi Sel Surya Berbasis Titania Melalui Penyisipan Logam Tembaga (Cu) dengan Berbagai Variasi Massa pada Lapisan Aktif Titania, Jurnal Sains Dasar, 6, 1, (2017), 1-7 https://doi.org/10.21831/jsd.v6i1.12129
  13. Imelda Hotmarisi Silalahi, Julan Julan, Muhammad Yusprianto, Rudiyansyah Rudiyansyah, Sintesis dan Transisi Elektronik Kompleks Tembaga(II)-Klorofil, Indonesian Journal of Pure and Applied Chemistry, 3, 3, (2020), 1-9
  14. Roberta Anjelia, Imelda Hotmarisi Silalahi, Gusrizal Gusrizal, Sintesis dan Transisi Elektronik Senyawa Kompleks Klorofil dengan Logam (M = Co2+, Fe3+), Indonesian Journal of Pure and Applied Chemistry, 2, 3, (2019), 102-111
  15. Jonathan P. Blitz, Diffuse Reflectance Spectroscopy, in: F.M. Mirabella (Ed.) Modern Techniques in Applied Molecular Spectroscopy, John Wiley & Sons, Inc, New York, 1998
  16. Patrycja Makuła, Michał Pacia, Wojciech Macyk, How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra, The Journal of Physical Chemistry Letters, 9, 23, (2018), 6814-6817 https://doi.org/10.1021/acs.jpclett.8b02892
  17. Aziza Hfii Ahliha, Fahru Nurosyid, Agus Supriyanto, Triana Kusumaningsih, The chemical bonds effect of anthocyanin and chlorophyll dyes on TiO2 for dye-sensitized solar cell (DSSC), Journal of Physics: Conference Series, 909, (2017), 012013 https://doi.org/10.1088/1742-6596/909/1/012013
  18. C. S. Clemente, V. G. P. Ribeiro, J. E. A. Sousa, F. J. N. Maia, A. C. H. Barreto, N. F. Andrade, J. C. Denardin, G. Mele, L. Carbone, S. E. Mazzetto, P. B. A. Fechine, Porphyrin synthesized from cashew nut shell liquid as part of a novel superparamagnetic fluorescence nanosystem, Journal of Nanoparticle Research, 15, 6, (2013), 1739 https://doi.org/10.1007/s11051-013-1739-6
  19. Martin Gouterman, Georges H. Wagnière, Lawrence C. Snyder, Spectra of porphyrins: Part II. Four orbital model, Journal of Molecular Spectroscopy, 11, 1, (1963), 108-127 https://doi.org/10.1016/0022-2852(63)90011-0
  20. Harsasi Setyawati, Handoko Darmokoesoemo, Anggy Tamara Ayu Ningtyas, Yassine Kadmi, Hicham Elmsellem, Heri Septya Kusuma, Effect of metal ion Fe(III) on the performance of chlorophyll as photosensitizers on dye sensitized solar cell, Results in Physics, 7, (2017), 2907-2918 https://doi.org/10.1016/j.rinp.2017.08.009
  21. Aziza Hfii Ahliha, Fahru Nurosyid, Agus Supriyanto, Kajian pH Klorofil Terhadap Ikatan Kimia Dye pada TiO2 sebagai Aplikasi Dye-Sensitized Solar Cell (DSSC), Jurnal Fisika dan Aplikasinya, 14, 1, (2018), 16-19 https://dx.doi.org/10.12962/j24604682.v14i1.3163
  22. Ralph G. Pearson, Hard and soft acids and bases, HSAB, part 1: Fundamental principles, Journal of Chemical Education, 45, 9, (1968), 581 https://doi.org/10.1021/ed045p581
  23. P. W. Atkins, T. L. Rourke, J. P. Overton, M. T. Weller, F. A. Armstrong, Inorganic Chemistry, Oxford University Press, Oxford, 2010
  24. Ana Toyyibatun Nasukhah, Fabrikasi dan Karakterisasi Dye Sensitized Solar Cell (DSSC) dengan Menggunakan Ekstraksi Daging Buah Naga Merah (Hylocereus Polyrhizus) sebagai Dye Sensitizer, undergraduate thesis, Physics Department, Institut Teknologi Sepuluh Nopember, Surabaya, 2012
  25. Hadi Santoso, Vicran Zharvan, Rizqa Daniyati, Nur Ichzan Aminuddin Siantang, Gatut Yudoyono, Endarko Endarko, Peningkatan Kinerja Dye-Sensitized Solar Cells menggunakan Metode Ultrasonikasi, Jurnal Fisika dan Aplikasinya, 11, 1, (2015), 32-35 https://dx.doi.org/10.12962/j24604682.v11i1.783
  26. Anita Listanti, Ahmad Taufiq, Arif Hidayat, Sunaryono Sunaryono, Investigasi Struktur dan Energi Band Gap Partikel Nano TiO2 Hasil Sintesis Menggunakan Metode Sol-Gel, Journal of Physical Science and Engineering, 3, 1, (2018), 8-15 https://doi.org/10.17977/um024v3i12018p008
  27. Akhiruddin Maddu, Mahfuddin Zuhri, Irmansyah Irmansyah, Penggunaan Ekstrak Antosianin Kol Merah sebagai Fotosensitizer pada Sel Surya TiO2 Nanokristal Tersensitisasi Dye, Makara Journal of Technology, 11, 2, (20097), 78-84 https://doi.org/10.7454/mst.v11i2.529
  28. Yulia Nadhirah, RD Kusumanto, Abu Hasan, Increasing Efficiency of Dye-Sensitized Solar Cell (DSSC) Originating from Yellow Sweet Potato Extract as Dye Sensitizer: Effect of Acetic Acid, Polyethylene Glycol, and Polyvinyl Alcohol as TiO2 binders, Jurnal Kimia Sains dan Aplikasi, 23, 11, (2020), 403-408 https://doi.org/10.14710/jksa.23.11.403-408
  29. Xiliang Nie, Shuping Zhuo, Gloria Maeng, Karl Sohlberg, Doping of TiO2 Polymorphs for Altered Optical and Photocatalytic Properties, International Journal of Photoenergy, 2009, (2009), 294042 https://doi.org/10.1155/2009/294042
  30. Saad Sh. Al-Omary, Laith A. Algharagholy, Mohsin E. Al-Dokheily, Band Gap Modification of TiO2 Using Solid State Reaction with Hydrides in Argon Atmosphere, International Journal of Engineering and Technology, 7, 4, (2018), 354-362 https://doi.org/10.14419/ijet.v7i4.36.23804

Last update:

  1. Bandgap Energy of TiO2/M-Curcumin Material (M = Na+, Mg2+, Cu2+)

    Imelda Hotmarisi Silalahi, Risya Sasri, Peni Peni, Titin Anita Zaharah. Jurnal Kimia Sains dan Aplikasi, 25 (1), 2022. doi: 10.14710/jksa.25.1.1-6
  2. The Correlation between Dye absorption Wavelength and Illumination Wavelength on DSSC Performance

    Hery Suyanto, Manuntun Manurung, I Putu Tedy Indrayana, Fiar Tri Santika. Jurnal Kimia Sains dan Aplikasi, 26 (4), 2023. doi: 10.14710/jksa.26.4.118-124
  3. Synthesis, characterization and application of complex compounds: Review of studies among Indonesian scholars

    Habiddin Habiddin, Djoko Hartanto. THE 5TH INTERNATIONAL CONFERENCE ON MATHEMATICS AND SCIENCE EDUCATION (ICoMSE) 2021: Science and Mathematics Education Research: Current Challenges and Opportunities, 2569 , 2023. doi: 10.1063/5.0112075
  4. Isolation of chlorophyll a from kirinyuh leaves Chromolaena odorata L.) as corrosion bioinhibitor in mild steel

    Yusthika Syakinah, Ni Komang Tri Dharmayani, Sudirman, Maria Ulfa, Emmy Yuanita, Ilim. THE 9TH INTERNATIONAL CONFERENCE OF THE INDONESIAN CHEMICAL SOCIETY ICICS 2021: Toward a Meaningful Society, 2638 , 2022. doi: 10.1063/5.0104659
  5. Synergistic impact of magnesium compound as a potential dye additive for organic-based sensitizer in DSSCs

    A.A. Khan, M.H. Abdullah, M.F.A. Rahman, M.Y. Syarifah Adilah, M.H. Mamat, A.R.M. Radzol, N.D. Md Sin, N. Sabani, I.B.S. Banu, M. Rusop. Materials Today Communications, 34 , 2023. doi: 10.1016/j.mtcomm.2022.105259
  6. Magnesium sulfate as a potential dye additive for chlorophyll-based organic sensitiser of the dye-sensitised solar cell (DSSC)

    A.A. Khan, M.Y. Syarifah Adilah, M.H. Mamat, S.Z. Yahaya, S. Setumin, M.N. Ibrahim, K. Daud, M.H. Abdullah. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 274 , 2022. doi: 10.1016/j.saa.2022.121140

Last update: 2024-12-26 10:28:51

No citation recorded.