Uric Acid Sensor Based on PEDOT:PSS Modified Screen-Printed Carbon Electrode Fabricated with a Simple Painting Technique

*Wulan Tri Wahyuni orcid scopus  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Indonesia
Rudi Heryanto orcid scopus  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Indonesia
Eti Rohaeti orcid scopus  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Indonesia
Achmad Fauzi  -  Department of Chemistry, Faculty of Mathematics and Natural Sciences, IPB University, Indonesia
Budi Riza Putra orcid scopus  -  Chemistry Department, Indonesian Defense University, Indonesia
Received: 5 Dec 2020; Revised: 23 Feb 2021; Accepted: 6 Mar 2021; Published: 15 Mar 2021.
Open Access Copyright 2021 Jurnal Kimia Sains dan Aplikasi
License URL: http://creativecommons.org/licenses/by-sa/4.0

Citation Format:
Cover Image
Abstract
A screen-printed carbon electrode is a suitable electrode for electrochemical sensors due to its simplicity and portability. This study aimed to fabricate a screen-printed carbon electrode modified with poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (SPCE-PEDOT:PSS) to improve the electrochemical performance for uric acid detection. The SPCE was fabricated using a layer-by-layer painting process of conductive ink consisting of graphite as a conductive material, polystyrene as a polymeric binder, and dichloromethane solvent on a polyvinyl chloride paper substrate. The fabricated SPCE was then modified with PEDOT:PSS by a drop-casting method. The characterization of SPCE-PEDOT:PSS surface morphology was performed using the scanning electron microscopy technique. The SPCE-PEDOT:PSS provided an acceptable linearity (R2 = 0.9985, 0.9993, 0.9985), sensitivity (0.070, 0.015, 0.024 µA/µM), precision (%RSD = 2.70%, 2.89%, 2.40%), limit of detection (1.61 µM, 1.14 µM, 1.62 µM), and limit of quantitation (5.37 µM, 3.81 µM to 5.39 µM) in measurement of uric acid standard solution using cyclic voltammetry, amperometry, and differential pulse voltammetry techniques, respectively. The studies using SPCE-PEDOT:PSS indicated that the electrode could be applied in the electrochemical measurement of uric acid in the human urine sample.
Keywords: Amperometry, electrode, fabrication, uric acid, voltammetry
Funding: The Ministry of Research and Technology, National Research and Innovation Agency of Republic Indonesia

Article Metrics:

  1. Raghavv Raghavender Suresh, Muthaiyan Lakshmanakumar, J. B. B. Arockia Jayalatha, K. S. Rajan, Swaminathan Sethuraman, Uma Maheswari Krishnan, John Bosco Balaguru Rayappan, Fabrication of screen-printed electrodes: opportunities and challenges, Journal of Materials Science, 56, 15, (2021), 8951-9006 https://doi.org/10.1007/s10853-020-05499-1
  2. Natarajan Thiyagarajan, Jen-Lin Chang, Krishnan Senthilkumar, Jyh-Myng Zen, Disposable electrochemical sensors: A mini review, Electrochemistry Communications, 38, (2014), 86-90 https://doi.org/10.1016/j.elecom.2013.11.016
  3. Thiago Faria Tormin, Rafael Rodrigues Cunha, Rodrigo Amorim Bezerra da Silva, Rodrigo Alejandro Abarza Munoz, Eduardo Mathias Richter, Combination of screen-printed electrodes and batch injection analysis: A simple, robust, high-throughput, and portable electrochemical system, Sensors and Actuators B: Chemical, 202, (2014), 93-98 https://doi.org/10.1016/j.snb.2014.04.096
  4. Zhenyu Chu, Jingmeng Peng, Wanqin Jin, Advanced nanomaterial inks for screen-printed chemical sensors, Sensors and Actuators B: Chemical, 243, (2017), 919-926 https://doi.org/10.1016/j.snb.2016.12.022
  5. Gerard Cummins, P. Y. Desmulliez Marc, Inkjet printing of conductive materials: a review, Circuit World, 38, 4, (2012), 193-213 https://doi.org/10.1108/03056121211280413
  6. Wulan Tri Wahyuni, Budi Riza Putra, Achmad Fauzi, Desi Ramadhanti, Eti Rohaeti, Rudi Heryanto, A Brief Review on Fabrication of Screen-Printed Carbon Electrode: Materials and Techniques, Indonesian Journal of Chemical Research, 8, 3, (2021), 210-218
  7. Ana Moya, Gemma Gabriel, Rosa Villa, F. Javier del Campo, Inkjet-printed electrochemical sensors, Current Opinion in Electrochemistry, 3, 1, (2017), 29-39 https://doi.org/10.1016/j.coelec.2017.05.003
  8. Jonathan P. Metters, Rashid O. Kadara, Craig E. Banks, New directions in screen printed electroanalytical sensors: an overview of recent developments, Analyst, 136, 6, (2011), 1067-1076 http://dx.doi.org/10.1039/C0AN00894J
  9. Mariana C. C. G. Carneiro, Felismina T. C. Moreira, Rosa A. F. Dutra, Rúben Fernandes, M. Goreti F. Sales, Homemade 3-carbon electrode system for electrochemical sensing: Application to microRNA detection, Microchemical Journal, 138, (2018), 35-44 https://doi.org/10.1016/j.microc.2017.12.026
  10. Wulan Tri Wahyuni, Budi Riza Putra, Rudi Heryanto, Eti Rohaeti, Dede Heri Yuli Yanto, Achmad Fauzi, A Simple Approach to Fabricate a Screen-Printed Electrode and Its Application for Uric Acid Detection, International Journal of Electrochemical Science, 16, (2021), 210221 https://doi.org/10.20964/2021.02.36
  11. Chakrit Sriprachuabwong, Chanpen Karuwan, Anurat Wisitsorrat, Ditsayut Phokharatkul, Tanom Lomas, Pornpimol Sritongkham, Adisorn Tuantranont, Inkjet-printed graphene-PEDOT:PSS modified screen printed carbon electrode for biochemical sensing, Journal of Materials Chemistry, 22, 12, (2012), 5478-5485 http://dx.doi.org/10.1039/C2JM14005E
  12. A. Wisitsoraat, S. Pakapongpan, C. Sriprachuabwong, D. Phokharatkul, P. Sritongkham, T. Lomas, A. Tuantranont, Graphene–PEDOT:PSS on screen printed carbon electrode for enzymatic biosensing, Journal of Electroanalytical Chemistry, 704, (2013), 208-213 https://doi.org/10.1016/j.jelechem.2013.07.012
  13. Decha Dechtrirat, Bunyarithi Sookcharoenpinyo, Pongthep Prajongtat, Chakrit Sriprachuabwong, Arsooth Sanguankiat, Adisorn Tuantranont, Supa Hannongbua, An electrochemical MIP sensor for selective detection of salbutamol based on a graphene/PEDOT:PSS modified screen printed carbon electrode, RSC Advances, 8, 1, (2018), 206-212 http://dx.doi.org/10.1039/C7RA09601A
  14. Ewa Moczko, Georges Istamboulie, Carole Calas-Blanchard, Regis Rouillon, Thierry Noguer, Biosensor employing screen-printed PEDOT:PSS for sensitive detection of phenolic compounds in water, Journal of Polymer Science Part A: Polymer Chemistry, 50, 11, (2012), 2286-2292 https://doi.org/10.1002/pola.26009
  15. Nashwa H. Ashmawy, Abdulrahman A. Almehizia, Teraze A. Youssef, Abd El-Galil E. Amr, Mohamed A. Al-Omar, Ayman H. Kamel, Novel Carbon/PEDOT/PSS-Based Screen-Printed Biosensors for Acetylcholine Neurotransmitter and Acetylcholinesterase Detection in Human Serum, Molecules, 24, 8, (2019), 1539 https://doi.org/10.3390/molecules24081539
  16. Xiaoyu Zhao, Jianhua Ding, Wenlong Bai, Yanfei Wang, Yujia Yan, Yan Cheng, Juankun Zhang, PEDOT:PSS/AuNPs/CA modified screen-printed carbon based disposable electrochemical sensor for sensitive and selective determination of carmine, Journal of Electroanalytical Chemistry, 824, (2018), 14-21 https://doi.org/10.1016/j.jelechem.2018.07.030
  17. Jittima Choosang, Panote Thavarungkul, Proespichaya Kanatharana, Apon Numnuam, AuNPs/PpPD/PEDOT:PSS-Fc modified screen-printed carbon electrode label-free immunosensor for sensitive and selective determination of human serum albumin, Microchemical Journal, 155, (2020), 104709 https://doi.org/10.1016/j.microc.2020.104709
  18. Tutku Beduk, Eloise Bihar, Sandeep G. Surya, Aminta N. Castillo, Sahika Inal, Khaled N. Salama, A paper-based inkjet-printed PEDOT:PSS/ZnO sol-gel hydrazine sensor, Sensors and Actuators B: Chemical, 306, (2020), 127539 https://doi.org/10.1016/j.snb.2019.127539
  19. Wulan Tri Wahyuni, Rany Zalvianita, Rudi Heryanto, Pembuatan Recycle Screen Printed Carbon Electrode dan Aplikasinya untuk Deteksi Asam Galat dengan Teknik Voltammetri, Jurnal Kimia Sains dan Aplikasi, 22, 5, (2019), 164-172 https://doi.org/10.14710/jksa.22.5.164-172
  20. Chun-Hao Su, Chia-Liang Sun, Ying-Chih Liao, Printed Combinatorial Sensors for Simultaneous Detection of Ascorbic Acid, Uric Acid, Dopamine, and Nitrite, ACS Omega, 2, 8, (2017), 4245-4252 https://doi.org/10.1021/acsomega.7b00681
  21. A. M Nardes, M. Kemerink, R. A. J. Janssen, J. A. M. Bastiaansen, N. M. M. Kiggen, B. M. W. Langeveld, A. J. J. M. van Breemen, M. M. de Kok, Microscopic Understanding of the Anisotropic Conductivity of PEDOT:PSS Thin Films, Advanced Materials, 19, 9, (2007), 1196-1200 https://doi.org/10.1002/adma.200602575
  22. A. Abou-Elela, Epidemiology, pathophysiology, and management of uric acid urolithiasis: A narrative review, Journal of Advanced Research, 8, 5, (2017), 513-527 https://doi.org/10.1016/j.jare.2017.04.005
  23. Shanmugam Senthil Kumar, Jayaraman Mathiyarasu, Kanala Lakshminarasimha Phani, Yogendra Kumar Jain, Venkatraman Yegnaraman, Determination of Uric Acid in the Presence of Ascorbic Acid Using Poly(3,4-ethylenedioxythiophene)-Modified Electrodes, Electroanalysis, 17, 24, (2005), 2281-2286 https://doi.org/10.1002/elan.200503375
  24. Mahsa Motshakeri, Jadranka Travas-Sejdic, Anthony R. J. Phillips, Paul A. Kilmartin, Rapid electroanalysis of uric acid and ascorbic acid using a poly(3,4-ethylenedioxythiophene)-modified sensor with application to milk, Electrochimica Acta, 265, (2018), 184-193 https://doi.org/10.1016/j.electacta.2018.01.147
  25. P. Kanyong, R. M. Pemberton, S. K. Jackson, J. P. Hart, Development of a sandwich format, amperometric screen-printed uric acid biosensor for urine analysis, Analytical Biochemistry, 428, 1, (2012), 39-43 https://doi.org/10.1016/j.ab.2012.05.027
  26. Ratchaneekorn Jirakunakorn, Suntisak Khumngern, Jittima Choosang, Panote Thavarungkul, Proespichaya Kanatharana, Apon Numnuam, Uric acid enzyme biosensor based on a screen-printed electrode coated with Prussian blue and modified with chitosan-graphene composite cryogel, Microchemical Journal, 154, (2020), 104624 https://doi.org/10.1016/j.microc.2020.104624

Last update: 2021-05-15 08:49:27

No citation recorded.

Last update: 2021-05-15 08:49:27

No citation recorded.