skip to main content

Performance of HDTMA-Br-Modified Indonesian Zeolite as a Drug Carrier Candidate for Diclofenac Sodium

Department of Chemistry, Universitas Negeri Semarang, Indonesia

Received: 2 Jan 2021; Revised: 24 Mar 2021; Accepted: 28 Mar 2021; Published: 31 Mar 2021.
Open Access Copyright 2021 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract
Diclofenac sodium is a non-steroidal anti-inflammatory drug with a relatively short release time. This short release time promotes a more frequent drug consumption and could lead to side effects in the stomach, e.g., gastrointestinal disorders, gastrointestinal bleeding, and gastric ulcers. A drug delivery system with a slow-release activity is one of the promising technologies to control the drug amount released to the stomach. A surfactant-modified natural zeolite as a carrier for diclofenac sodium has been used in this study. This study focused on the preparation, characterization, and slow-release performance of HDTMA-modified natural zeolite as a carrier for diclofenac sodium. The zeolite underwent chemical and physical activation, as well as milling prior to use. It was proven that the zeolite used was dominated by mordenite and clinoptilolite with high stability properties towards acid treatments, as indicated by the XRD patterns. A modification of the zeolite surface using HDTMABr was also successfully performed, indicated by the appearance of peaks at wavenumbers of 2923.05 cm-1 and 2853.39 cm-1 (symmetrical and asymmetrical CH2 strains of HDTMA molecules, respectively) in the FTIR spectra. The synthesized HDTMA-modified natural zeolite also showed an excellent surface property such as surface area, pore-volume, and size, as indicated by the BET-BJH isotherms on the nitrogen adsorption. The slow-release performance of the zeolite-based drug delivery system was studied by investigating the adsorption-desorption behavior of HDTMA-modified zeolite towards diclofenac sodium. The HDTMA-modified zeolite adsorbed the diclofenac sodium of 54.01% at a pH of 7.5, the contact time of 60 min, and the initial concentration of 100 ppm. The adsorbed diclofenac sodium of 73.95% could be released from the HDTMA-modified adsorbent for 8 h, mimicking the time length of drug metabolism in the human body.
Fulltext View|Download
Keywords: zeolite; HDTMA; carrier; diclofenac sodium; performance
Funding: Universitas Negeri Semarang

Article Metrics:

  1. Christianah M. Adeyeye, Pui-Kai Li, Diclofenac Sodium, in: K. Florey (Ed.) Analytical Profiles of Drug Substances, Academic Press, 1990, https://doi.org/10.1016/S0099-5428(08)60366-4
  2. Daniel P. Otto, Melgardt M. de Villiers, Physicochemical Principles of Nanosized Drug Delivery Systems, in: M.M. de Villiers, P. Aramwit, G.S. Kwon (Eds.) Nanotechnology in Drug Delivery, Springer New York, New York, NY, 2009, https://doi.org/10.1007/978-0-387-77668-2_1
  3. Manuel Arruebo, Drug delivery from structured porous inorganic materials, WIREs Nanomedicine and Nanobiotechnology, 4, 1, (2012), 16-30 https://doi.org/10.1002/wnan.132
  4. M. C. Bonferoni, G. Cerri, M. de’ Gennaro, C. Juliano, C. Caramella, Zn2+-exchanged clinoptilolite-rich rock as active carrier for antibiotics in anti-acne topical therapy: In-vitro characterization and preliminary formulation studies, Applied Clay Science, 36, 1, (2007), 95-102 https://doi.org/10.1016/j.clay.2006.04.014
  5. Ricardo Amorim, Natália Vilaça, Olga Martinho, Rui M. Reis, Mariana Sardo, João Rocha, António M. Fonseca, Fátima Baltazar, Isabel C. Neves, Zeolite Structures Loading with an Anticancer Compound As Drug Delivery Systems, The Journal of Physical Chemistry C, 116, 48, (2012), 25642-25650 https://doi.org/10.1021/jp3093868
  6. Monika Datta, M. Kaur, In vitro release of sodium diclofenac from poloxamer 188 modified montmorillonite as an oral drug delivery vehicle, International Journal of Pharmacy and Pharmaceutical Sciences, 6, 5, (2014), 100-110
  7. Patricia Horcajada, Christian Serre, María Vallet-Regí, Muriel Sebban, Francis Taulelle, Gérard Férey, Metal–Organic Frameworks as Efficient Materials for Drug Delivery, Angewandte Chemie International Edition, 45, 36, (2006), 5974-5978 https://doi.org/10.1002/anie.200601878
  8. Maya Sari Ananda Pohan, Sutarno Sutarno, Suyanta Suyanta, Studi Adsorpsi-Desorpsi Anion Fosfat pada Zeolit Termodifi-kasi CTAB, Jurnal Penelitian Sains, 18, 3, (2017), 123-135
  9. Yulius Dala Ngapa, Study of The Acid-Base Effect on Zeolite Activation and Its Characterization as Adsorbent of Methylene Blue Dye, Jurnal Kimia dan Pendidikan Kimia, 2, 2, (2017), 90-96 https://doi.org/10.20961/jkpk.v2i2.11904
  10. I Putu Putra Widia Semara, Tjokorda Gde Tirta Nindhia, Studi Pengaruh Aktifasi Termal terhadap Struktur Mikro dan Porositas Zeolit Alam, Jurnal Teknik Mesin Cakram, 4, 2, (2010), 139-144
  11. Wulan Safrihatini Atikah, Karakterisasi Zeolit Alam Gunung Kidul Teraktivasi sebagai Media Adsorben Pewarna Tekstil, Arena Tekstil, 32, 1, (2017), 17-24
  12. A. Rivera, T. Farías, Clinoptilolite–surfactant composites as drug support: A new potential application, Microporous and Mesoporous Materials, 80, 1, (2005), 337-346 https://doi.org/10.1016/j.micromeso.2005.01.011
  13. Ronny Martien, Adhyatmika Adhyatmika, Iramie D. K. Irianto, Verda Farida, Dian Purwita Sari, Perkembangan teknologi nanopartikel sebagai sistem penghantaran obat, Majalah Farmaseutik, 8, 1, (2012), 133-144
  14. Amir Charkhi, Hossein Kazemian, Mohammad Kazemeini, Optimized experimental design for natural clinoptilolite zeolite ball milling to produce nano powders, Powder Technology, 203, 2, (2010), 389-396 https://doi.org/10.1016/j.powtec.2010.05.034
  15. Lesley E. Smart, Elaine A. Moore, Solid State Chemistry: An Introduction, Fourth ed., Taylor & Francis, 2012
  16. Danina Krajišnik, Aleksandra Daković, Anđelija Malenović, Maja Milojević-Rakić, Vera Dondur, Željka Radulović, Jela Milić, Investigation of adsorption and release of diclofenac sodium by modified zeolites composites, Applied Clay Science, 83-84, (2013), 322-326 https://doi.org/10.1016/j.clay.2013.08.011
  17. Zhaohui Li, Stephen J. Roy, Yiqiao Zou, Robert S. Bowman, Long-Term Chemical and Biological Stability of Surfactant-Modified Zeolite, Environmental Science & Technology, 32, 17, (1998), 2628-2632 https://doi.org/10.1021/es970841e
  18. Pri Andi Anggara, Sri Wahyuni, Agung Tri Prasetya, Optimalisasi Zeolit Alam Wonosari dengan Proses Aktivasi secara Fisis dan Kimia, Indonesian Journal of Chemical Science, 2, 1, (2013), 72-77
  19. Yogo Setiawan, F. Widhi Mahatmanti, Harjono Hanis, Preparasi dan Karakterisasi Nanozeolit dari Zeolit Alam Gunungkidul dengan Metode Top-Down, Indonesian Journal of Chemical Science, 7, 1, (2018), 43-49
  20. Uwe Holzwarth, Neil Gibson, The Scherrer equation versus the ‘Debye-Scherrer equation’, Nature Nanotechnology, 6, 9, (2011), 534-534 https://doi.org/10.1038/nnano.2011.145
  21. Sriatun Sriatun, Dimas Buntarto, Adi Darmawan, Pengaruh Penambahan Surfaktan Hexadecyltrimethyl-Ammonium (HDTMA) pada Zeolit Alam Terdealuminasi terhadap Kemampuan Mengadsorpsi Fenol, Jurnal Kimia Sains dan Aplikasi, 11, 1, (2008), 11-14 https://doi.org/10.14710/jksa.11.1.11-14
  22. Nurul Fauziyah, Sriatun Sriatun, Pardoyo Pardoyo, Adsorption of Indigo Carmine Dye using Cetyltrimethylammonium Bromide (CTAB) Surfactant Modified Zeolite, Jurnal Sains dan Matematika, 23, 4, (2015), 121-126
  23. Tania Farías, Louis Charles de Ménorval, Jerzy Zajac, Aramis Rivera, Adsolubilization of drugs onto natural clinoptilolite modified by adsorption of cationic surfactants, Colloids and Surfaces B: Biointerfaces, 76, 2, (2010), 421-426 https://doi.org/10.1016/j.colsurfb.2009.11.018
  24. U. Aroke, U. El-Nafaty, XRF, XRD and FTIR properties and characterization of HDTMA-Br surface modified organo-kaolinite clay, International Journal of Emerging Technology and Advanced Engineering, 4, 4, (2014), 817-825
  25. Alireza Nezamzadeh-Ejhieh, Sanaz Tavakoli-Ghinani, Effect of a nano-sized natural clinoptilolite modified by the hexadecyltrimethyl ammonium surfactant on cephalexin drug delivery, Comptes Rendus Chimie, 17, 1, (2014), 49-61 https://doi.org/10.1016/j.crci.2013.07.009
  26. Michael M. J. Treacy, J. B. Higgins, Collection of Simulated XRD Powder Patterns for Zeolites., Fifth (5th) ed., Elsevier Science, 2007
  27. Arifudin Idrus, Anastasia Dewi Titisari, Rahman Sudiyo, R. Soekrisno, Geology, Characterization, Quality Improvement and Recommended Utilization of Natural Zeolite (Zeolitic Tuff) Deposits from Gunung Kidul, Yogyakarta Special Teritory, Indonesia, 2nd IASME / WSEAS International Conference on GEOLOGY and SEISMOLOGY (GES ‘08), Cambridge, UK, 2008
  28. O. Korkuna, R. Leboda, J. Skubiszewska-Zie¸ba, T. Vrublevs’ka, V. M. Gun’ko, J. Ryczkowski, Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite, Microporous and Mesoporous Materials, 87, 3, (2006), 243-254 https://doi.org/10.1016/j.micromeso.2005.08.002
  29. M. L. McGlashan, M. A. Paul, D. H. Whiffen, Manual of Symbols and Terminology for Physicochemical Quantities and Units, Pure and Applied Chemistry, 51, 1, (1979), 1-41 https://doi.org/10.1351/pac197951010001
  30. Borislav Zdravkov, Jiří Čermák, Martin Šefara, Josef Janků, Pore classification in the characterization of porous materials: A perspective, Open Chemistry, 5, 2, (2007), 385-395 https://doi.org/10.2478/s11532-007-0017-9
  31. M. E. Palomo, M. P. Ballesteros, P. Frutos, Analysis of diclofenac sodium and derivatives, Journal of Pharmaceutical and Biomedical Analysis, 21, 1, (1999), 83-94 https://doi.org/10.1016/S0731-7085(99)00089-8
  32. Danina Krajišnik, Aleksandra Daković, Andjelija Malenović, Ljiljana Djekić, Milan Kragović, Vladimir Dobričić, Jela Milić, An investigation of diclofenac sodium release from cetylpyridinium chloride-modified natural zeolite as a pharmaceutical excipient, Microporous and Mesoporous Materials, 167, (2013), 94-101 https://doi.org/10.1016/j.micromeso.2012.03.033
  33. Ken Sun, Yan Shi, Xiaoyu Wang, Joseph Rasmussen, Zhaohui Li, Jianxi Zhu, Organokaolin for the uptake of pharmaceuticals diclofenac and chloramphenicol from water, Chemical Engineering Journal, 330, (2017), 1128-1136 https://doi.org/10.1016/j.cej.2017.08.057
  34. H. R. Tashauoei, H. Movahedian Atar, M. Kamali, M. M. Amin, M. Nikaein, Removal of hexavalent chromium (VI) from aqueous solutions using surface modified nanozeolite A, International Journal of Environmental Research, 4, 3, (2010), 491-500 https://doi.org/10.22059/ijer.2010.234
  35. Mikrajuddin Abdullah, Yudistira Virgus, Nirmin, Khairurrijal Khairurrijal, Review: Sintesis Nanomaterial, Jurnal Nanosains & Nanoteknologi, 1, 2, (2008), 33-57
  36. P. Pardoyo, Y. Astuti, G. Herinnayah, S. Suhartana, P. J. Wibawa, The influence of high energy milling to the adsorption of Cd(II) and Zn(II) ions on activated zeolite, Journal of Physics: Conference Series, 1524, (2020), 012080 https://doi.org/10.1088/1742-6596/1524/1/012080
  37. Mirela Rožić, Snežana Miljanić, Sorption of HDTMA cations on Croatian natural mordenite tuff, Journal of Hazardous Materials, 185, 1, (2011), 423-429 https://doi.org/10.1016/j.jhazmat.2010.09.050

Last update:

No citation recorded.

Last update: 2024-04-20 13:43:29

No citation recorded.