skip to main content

Simultaneous Effect of Ultrasonic and Chemical Treatment on the Extraction of Nanocellulose From Sugarcane Bagasse

Organic Chemistry Laboratory, STIKES RS Anwar Medika, Sidoarjo, Indonesia

Received: 17 Mar 2021; Revised: 18 Jun 2021; Accepted: 26 Jun 2021; Available online: 31 Jul 2021; Published: 31 Jul 2021.
Open Access Copyright 2021 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

The focus of this study was the simultaneous effect of ultrasonic and chemical treatment on the extraction of nanocellulose from sugarcane bagasse. Ultrasonic waves can accelerate the dispersion process of nanocellulose particles so that extraction runs faster and is environmentally friendly. The bagasse was treated by chemical treatment with ultrasonic waves, and then the nanocellulose was prepared using acid hydrolysis with ultrasonic waves. The effect of ultrasonication was investigated. The crystallinity of sugarcane bagasse, cellulose, and nanocellulose was analyzed by X-ray diffraction. Based on the diffractogram, there was an increase in the crystallinity of nanocellulose. The chemical composition of extracted cellulose and nanocellulose was analyzed by Fourier-transformed infrared spectroscopy. The results of the analysis showed that lignin and hemicellulose were removed from the bagasse during the extraction process. The analysis results also showed that the breaking of intramolecular hydrogen and glycosidic bonds occurred during the hydrolysis process. The morphology of bagasse, cellulose, and nanocellulose was analyzed by Scanning electron microscopy. While the particle size of nanocellulose was analyzed by the Particle Size Analysis instrument. The average size of nanocellulose particles was 132.67 nm.

Note: This article has supplementary file(s).

Fulltext View|Download |  common.other
Untitled
Subject
Type Other
  Download (33KB)    Indexing metadata
Keywords: nanocellulose; sugarcane bagasse; acid hydrolysis; ultrasonication
Funding: the Ministry of Research, Technology and Higher Education Republic Indonesia; STIKES RS Anwar Medika

Article Metrics:

  1. Tiffany Abitbol, Amit Rivkin, Yifeng Cao, Yuval Nevo, Eldho Abraham, Tal Ben-Shalom, Shaul Lapidot, Oded Shoseyov, Nanocellulose, a tiny fiber with huge applications, Current Opinion in Biotechnology, 39, (2016), 76-88 https://doi.org/10.1016/j.copbio.2016.01.002
  2. Ayse Alemdar, Mohini Sain, Isolation and characterization of nanofibers from agricultural residues – Wheat straw and soy hulls, Bioresource Technology, 99, 6, (2008), 1664-1671 https://doi.org/10.1016/j.biortech.2007.04.029
  3. Ansharullah Ansharullah, Nur Muhammad Abdillah Saenuddin, RH Fitri Faradilla, Asranuddin Asranudin, Asniar Asniar, Muhammad Nurdin, Production of Micro Crystalline Cellulose from Tapioca Solid Waste: Effect of Acid Concentration on its Physico-chemical Properties, Jurnal Kimia Sains dan Aplikasi, 23, 5, (2020), 147-151 https://doi.org/10.14710/jksa.23.5.147-151
  4. Chrysanta Aurelia, Agnes Murdiati, Andriati Ningrum, Effect of Sodium Hydroxide and Sodium Hypochlorite on the Physicochemical Characteristics of Jack Bean Skin (Canavalia ensiformis), Pakistan Journal of Nutrition, 18, 2, (2019), 193-200 https://dx.doi.org/10.3923/pjn.2019.193.200
  5. L. A. Camargo, S. C. Pereira, A. C. Correa, C. S. Farinas, J. M. Marconcini, L. H. C. Mattoso, Feasibility of Manufacturing Cellulose Nanocrystals from the Solid Residues of Second-Generation Ethanol Production from Sugarcane Bagasse, BioEnergy Research, 9, 3, (2016), 894-906 https://doi.org/10.1007/s12155-016-9744-0
  6. Bibin Mathew Cherian, Alcides Lopes Leão, Sivoney Ferreira de Souza, Sabu Thomas, Laly A. Pothan, M. Kottaisamy, Isolation of nanocellulose from pineapple leaf fibres by steam explosion, Carbohydrate Polymers, 81, 3, (2010), 720-725 https://doi.org/10.1016/j.carbpol.2010.03.046
  7. Andrew Chesson, Effects of sodium hydroxide on cereal straws in relation to the enhanced degradation of structural polysaccharides by rumen microorganisms, Journal of the Science of Food and Agriculture, 32, 8, (1981), 745-758 https://doi.org/10.1002/jsfa.2740320802
  8. Zaira Zaman Chowdhury, Sharifah Bee Abd Hamid, Preparation and characterization of nanocrystalline cellulose using ultrasonication combined with a microwave-assisted pretreatment process, BioResources, 11, 2, (2016), 3397-3415
  9. Devi Bentia Effendi, Nurul Huda Rosyid, Asep Bayu Dani Nandiyanto, Ahmad Mudzakir, Review: Sintesis Nanoselulosa, Jurnal Integrasi Proses, 5, 2, (2015), 61-74
  10. Lestari Hetalasi Saputri, Romi Sukmawan, Heru Santoso Budi Rochardjo, Rochmadi Rochmadi, Isolasi Nano Selulosa dari Ampas Tebu dengan Proses Blending pada Berbagai Variasi Konsentrasi, Seminar Nasional Teknik Kimia Kejuangan, Yogyakarta, 2018
  11. Silviya Elanthikkal, Unnikrishnan Gopalakrishnapanicker, Soney Varghese, James T. Guthrie, Cellulose microfibres produced from banana plant wastes: Isolation and characterization, Carbohydrate Polymers, 80, 3, (2010), 852-859 https://doi.org/10.1016/j.carbpol.2009.12.043
  12. W. Emmanuela Maria, Endang Kusumawati, Anggi Regiana, Dian Ratna Suminar, Production Nanocellulose from Raw Materials for Oil Palm Empty Bunches (TKKS) with Hydrolysis and Freeze-Drying Methods, IOP Conference Series: Materials Science and Engineering, 742, (2020), 012033 http://dx.doi.org/10.1088/1757-899X/742/1/012033
  13. Marcelo A. Guancha-Chalapud, Jaime Gálvez, Liliana Serna-Cock, Cristobal N. Aguilar, Valorization of Colombian fique (Furcraea bedinghausii) for production of cellulose nanofibers and its application in hydrogels, Scientific Reports, 10, 1, (2020), 11637 https://doi.org/10.1038/s41598-020-68368-6
  14. Guddu Kumar Gupta, Pratyoosh Shukla, Lignocellulosic Biomass for the Synthesis of Nanocellulose and Its Eco-Friendly Advanced Applications, Frontiers in Chemistry, 8, 1203, (2020), 1-13 https://doi.org/10.3389/fchem.2020.601256
  15. Wadood Y. Hamad, Thomas Q. Hu, Structure–process–yield interrelations in nanocrystalline cellulose extraction, The Canadian Journal of Chemical Engineering, 88, 3, (2010), 392-402 https://doi.org/10.1002/cjce.20298
  16. Nina Hartati, Tetty Kemala, Komar Sutriah, Obie Farobie, Kompatibilitas Nanokristal Selulosa Termodifikasi Setrimonium Klorida (CTAC) dalam Matriks Poliasam Laktat sebagai Material Pengemas, Jurnal Kimia Sains dan Aplikasi, 22, 4, (2019), 157-163 https://doi.org/10.14710/jksa.22.4.157-163
  17. Richard N. Kelly, Jacqueline Kazanjian, Commerical reference shape standards use in the study of particle shape effect on laser diffraction particle size analysis, AAPS PharmSciTech, 7, 2, (2006), E126-E137 https://doi.org/10.1208/pt070249
  18. Juanjuan Li, Ruitao Cha, Kaiwen Mou, Xiaohui Zhao, Keying Long, Huize Luo, Fengshan Zhou, Xingyu Jiang, Nanocellulose-Based Antibacterial Materials, Advanced Healthcare Materials, 7, 20, (2018), 1800334 https://doi.org/10.1002/adhm.201800334
  19. Arup Mandal, Debabrata Chakrabarty, Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization, Carbohydrate Polymers, 86, 3, (2011), 1291-1299 https://doi.org/10.1016/j.carbpol.2011.06.030
  20. Nanang Masruchin, Putri Amanda, Wida Banar Kusumaningrum, Lisman Suryanegara, Arif Nuryawan, Particle Size Distribution and Yield Analysis of Different Charged Cellulose Nanofibrils Obtained by TEMPO-mediated Oxidation, IOP Conference Series: Earth and Environmental Science, 572, (2020), 012045 http://dx.doi.org/10.1088/1755-1315/572/1/012045
  21. Subrata Mondal, Preparation, properties and applications of nanocellulosic materials, Carbohydrate Polymers, 163, (2017), 301-316 https://doi.org/10.1016/j.carbpol.2016.12.050
  22. Kristiina Oksman, Yvonne Aitomäki, Aji P. Mathew, Gilberto Siqueira, Qi Zhou, Svetlana Butylina, Supachok Tanpichai, Xiaojian Zhou, Saleh Hooshmand, Review of the recent developments in cellulose nanocomposite processing, Composites Part A: Applied Science and Manufacturing, 83, (2016), 2-18 https://doi.org/10.1016/j.compositesa.2015.10.041
  23. Patchiya Phanthong, Prasert Reubroycharoen, Xiaogang Hao, Guangwen Xu, Abuliti Abudula, Guoqing Guan, Nanocellulose: Extraction and application, Carbon Resources Conversion, 1, 1, (2018), 32-43 https://doi.org/10.1016/j.crcon.2018.05.004
  24. Ruan SA Ribeiro, Bruno C Pohlmann, Veronica Calado, Ninoska Bojorge, Nei Pereira Jr, Production of nanocellulose by enzymatic hydrolysis: Trends and challenges, Engineering in Life Sciences, 19, 4, (2019), 279-291 https://doi.org/10.1002/elsc.201800158
  25. Noor Afizah Rosli, Ishak Ahmad, Ibrahim Abdullah, Isolation and characterization of cellulose nanocrystals from Agave angustifolia fibre, BioResources, 8, 2, (2013), 1893-1908
  26. Athanasia Amanda Septevani, Dian Burhani, Yulianti Sampora, Yenni Apriliany Devy, Gita Novi Ariani, Sudirman Sudirman, Dewi Sondari, Khairatun Najwa Mohd Amin, The Effect of Acid Hydrolysis Treatment on the Production of Nanocellulose Based on Oil Palm Empty Fruit Bunches, Jurnal Kimia Terapan Indonesia, 21, 1, (2019), 31-37 https://doi.org/10.14203/jkti.v21i1.416
  27. Natalia Erna Setyaningsih, Rodhotul Muttaqin, Isna Mar’ah, Optimalisasi Waktu Coating pada Bahan Komposit Alam untuk Karakterisasi Morfologi dengan Scanning Electron Microscopy (SEM)–Energy Dispersive X-Ray Spectroscopy (EDX), Physics Communication, 1, 2, (2017), 36-40
  28. Naresh Shahi, Byungjin Min, Bedanga Sapkota, Vijaya K. Rangari, Eco-Friendly Cellulose Nanofiber Extraction from Sugarcane Bagasse and Film Fabrication, Sustainability, 12, 15, (2020), 6015 https://doi.org/10.3390/su12156015
  29. Monika Szymańska-Chargot, Monika Chylińska, Giorgia Pertile, Piotr M. Pieczywek, Krystian J. Cieślak, Artur Zdunek, Magdalena Frąc, Influence of chitosan addition on the mechanical and antibacterial properties of carrot cellulose nanofibre film, Cellulose, 26, 18, (2019), 9613-9629 https://doi.org/10.1007/s10570-019-02755-9
  30. Marianne Le Troedec, David Sedan, Claire Peyratout, Jean Pierre Bonnet, Agnès Smith, René Guinebretiere, Vincent Gloaguen, Pierre Krausz, Influence of various chemical treatments on the composition and structure of hemp fibres, Composites Part A: Applied Science and Manufacturing, 39, 3, (2008), 514-522 https://doi.org/10.1016/j.compositesa.2007.12.001
  31. Wei-ming Wang, Zai-sheng Cai, Jian-yong Yu, Zhao-peng Xia, Changes in composition, structure, and properties of jute fibers after chemical treatments, Fibers and Polymers, 10, 6, (2009), 776-780 https://doi.org/10.1007/s12221-009-0776-3
  32. W. T. Wulandari, A. Rochliadi, I. M. Arcana, Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse, IOP Conference Series: Materials Science and Engineering, 107, (2016), 012045 http://dx.doi.org/10.1088/1757-899X/107/1/012045
  33. Qinghua Xu, Yunzhong Ji, Qiucun Sun, Yingjuan Fu, Yongjian Xu, Liqiang Jin, Fabrication of Cellulose Nanocrystal/Chitosan Hydrogel for Controlled Drug Release, Nanomaterials, 9, 2, (2019), 253 https://doi.org/10.3390/nano9020253

Last update:

  1. Sustainable upcycling of sugarcane bagasse into nanofibrillated cellulose utilizing novel green solvents and high intensity ultrasonication

    Archana Pandey, Ajay S. Kalamdhad, Yogesh Chandra Sharma. Sustainable Chemistry and Pharmacy, 37 , 2024. doi: 10.1016/j.scp.2023.101373
  2. The nanocellulose addition’s effect on chitosan composites mechanical properties and antibacterial activity against S. aureus

    A’yunil Hisbiyah, Lilik Nurfadlilah, Khoirun Nisyak. THE 8TH INTERNATIONAL CONFERENCE AND WORKSHOP ON BASIC AND APPLIED SCIENCE (ICOWOBAS) 2021, 2554 , 2023. doi: 10.1063/5.0103724
  3. Biorefinery aspects for cost-effective production of nanocellulose and high value-added biocomposites

    R. Reshmy, Eapen Philip, Aravind Madhavan, Ayon Tarfdar, Raveendran Sindhu, Parameswaran Binod, Ranjna Sirohi, Mukesh Kumar Awasthi, Ashok Pandey. Fuel, 311 , 2022. doi: 10.1016/j.fuel.2021.122575
  4. Recent advances of nanocellulose as biobased adsorbent for heavy metal ions removal: A sustainable approach integrating with waste management

    Archana Pandey, Ajay Kalamdhad, Yogesh Chandra Sharma. Environmental Nanotechnology, Monitoring & Management, 20 , 2023. doi: 10.1016/j.enmm.2023.100791

Last update: 2024-11-23 20:23:00

No citation recorded.