skip to main content

Degradation of Imidacloprid Residues on Unripe Tomatoes (Solanum lycopersicum) by AOPs and Its Analysis using Spectrophotometer and HPLC

Department of Chemistry, Andalas University, Padang 25163, Indonesia

Received: 20 Apr 2021; Revised: 26 Aug 2021; Accepted: 22 Nov 2021; Published: 31 Dec 2021.
Open Access Copyright 2021 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Abstract

Imidacloprid is an insecticide-active ingredient used by farmers to kill and control insects. Imidacloprid residue can be found in unripe tomatoes. Consuming unripe tomatoes contaminated with imidacloprid can cause human health problems such as cancer, chronic kidney disease, neurological disorders, and reproductive issues. In this study, imidacloprid pesticide residues on unripe tomatoes were degraded by the Advanced Oxidation Processes (AOPs) method, namely ozonolysis, sonolysis, and sonozolysis at various processing times (5, 10, 15, 20, and 25 minutes) in 50 g sample mass and 100 mL water volume. The changes in imidacloprid concentration before and after degradation were measured using a UV-Vis spectrophotometer and HPLC. The results of imidacloprid residue degradation by sonolysis was 66.99%, ozonolysis was 74.87%, and sonozolysis was 66.00%. The degradation kinetics of the imidacloprid residue was then studied. Kinetic study of all AOPs methods found that imidacloprid degradation followed a first-order kinetic model. The kinetics data showed that ozonolysis degradation is faster than sonolysis and sonozolysis, with a half-life (t1/2) of 16.90 minutes.

Fulltext View|Download
Keywords: Imidacloprid; Degradation; AOPs; Unripe tomatoes
Funding: Universitas Andalas

Article Metrics:

  1. Soma Srivastava, K Kulshrestha, Nutritional content and significance of tomato powder, Annals of Arid Zone, 52, 2, (2013), 121-124 http://dx.doi.org/10.13140/RG.2.2.33413.65768
  2. Tri Hariyadi, Judy Retti Witono, Herry Santoso, The Influence of Foaming Agent and Cake Thickness on the Drying Process Tomatoes Using a Tray Dryer, Reaktor, 18, 3, (2018), 143-148 http://dx.doi.org/10.14710/reaktor.18.03.143-148
  3. Venugopal Dhananjayan, Beerappa Ravichandran, Occupational health risk of farmers exposed to pesticides in agricultural activities, Current Opinion in Environmental Science & Health, 4, (2018), 31-37 https://doi.org/10.1016/j.coesh.2018.07.005
  4. Wenchao Han, Ying Tian, Xiaoming Shen, Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: an overview, Chemosphere, 192, (2018), 59-65 https://doi.org/10.1016/j.chemosphere.2017.10.149
  5. Fahim Mohamed, Indika Gawarammana, Thomas A. Robertson, Michael S. Roberts, Chathura Palangasinghe, Shukry Zawahir, Shaluka Jayamanne, Jaganathan Kandasamy, Michael Eddleston, Nick A. Buckley, Acute human self-poisoning with imidacloprid compound: a neonicotinoid insecticide, PLoS One, 4, 4, (2009), e5127 https://doi.org/10.1371/journal.pone.0005127
  6. World Health Organization, The WHO recommended classification of pesticides by hazard and guidelines to classification 2019, World Health Organization, 2020,
  7. Badan Standardisasi Nasional, Maksimum limit of pesticide residues on indonesian agricultural products, SNI 7313:2008, Jakarta, 2008
  8. Yangliu Wu, Quanshun An, Dong Li, Jun Wu, Canping Pan, Comparison of different home/commercial washing strategies for ten typical pesticide residue removal effects in kumquat, spinach and cucumber, International journal of environmental research and public health, 16, 3, (2019), 472 https://doi.org/10.3390/ijerph16030472
  9. Gouri Satpathy, Yogesh Kumar Tyagi, Rajinder Kumar Gupta, Removal of organophosphorus (OP) pesticide residues from vegetables using washing solutions and boiling, Journal of Agricultural Science, 4, 2, (2012), 69-78 https://doi.org/10.5539/jas.v4n2p69
  10. Ali Heshmati, Fatemeh Nazemi, Dichlorvos (DDVP) residue removal from tomato by washing with tap and ozone water, a commercial detergent solution and ultrasonic cleaner, Food Science and Technology, 38, (2017), 441-446 https://doi.org/10.1590/1678-457X.07617
  11. Reza Audina Putri, Safni Safni, Novesar Jamarun, Upita Septiani, Moon-Kyung Kim, Kyung-Duk Zoh, Degradation and mineralization of violet-3B dye using CN-codoped TiO 2 photocatalyst, Environmental Engineering Research, 25, 4, (2020), 529-535 https://doi.org/10.4491/eer.2019.196
  12. Sofian Ansori, Sriatun Sriatun, Pardoyo Pardoyo, Modifikasi Zeolit Alam Menggunakan TiO2 sebagai Fotokatalis Zat Pewarna Indigo Carmine, Jurnal Kimia Sains dan Aplikasi, 19, 2, (2016), 68-71 https://doi.org/10.14710/jksa.19.2.68-71
  13. Kharisma Madda Ellyana, Kharisma Luthfiaratri Rahayu, Ratri Febriastuti, Abdul Haris, Cassava Skin Usage (Manihot esculenta L.) as Photocatalyst for Degradation of Methylene Blue in the River of Textile Industrial Zone, Jurnal Kimia Sains dan Aplikasi, 21, 4, 232-236 https://doi.org/10.14710/jksa.21.4.232-236
  14. Vanny Yulia Safitri, Adlis Santoni, Diana Vanda Wellia, Khoiriah Khoiriah, Safni Safni, Degradation of Paracetamol by Photolysis Using CN-Codoped TiO2, Molekul, 12, 2, (2017), 189-195 http://dx.doi.org/10.20884/1.jm.2017.12.2.378
  15. Devina Ingrid Anggraini, I. Pujilestari, Efektivitas Fotodegradasi Amoksisilin yang Dikatalisis dengan TiO2 dengan Keberadaan Ion Ag (I), Jurnal Kimia Sains dan Aplikasi, 20, 3, (2017), 105-109 https://doi.org/10.14710/jksa.20.3.105-109
  16. Khoiriah Khoiriah, Diana Vanda Wellia, Jarnuzi Gunlazuardi, Safni Safni, Photocatalytic Degradation of Commercial Diazinon Pesticide Using C, N-codoped TiO 2 as Photocatalyst, Indonesian Journal of Chemistry, 20, 3, (2020), 587-596 https://doi.org/10.22146/ijc.43982
  17. Sandra Tri Juli Fendri, Safni Safni, Hamzar Suyani, Penggunaan SnO2 dan TiO2-Anatase sebagai Katalis Degradasi Carbaryl secara Ozonolisis serta Pendeteksiannya Menggunakan Spektrofotometer Uv-Vis dan HPLC, Jurnal Katalisator, 2, 1, (2017), 39-52
  18. Hamzar Suyani, Degradasi Senyawa Dikofol dalam Pestisida Kelthane 200 EC Secara Fotolisis dengan Penambahan TiO2-anatase, Jurnal Riset Kimia, 2, 2, (2015), 195 https://doi.org/10.25077/jrk.v2i2.154
  19. Barry L. Loeb, Ozone: Science & Engineering: Thirty-three years and growing, Ozone: Science & Engineering, 33, 4, (2011), 329-342 https://doi.org/10.1080/01919512.2011.584302
  20. Mehmet A Oturan, Jean-Jacques Aaron, Advanced oxidation processes in water/wastewater treatment: principles and applications. A review, Critical Reviews in Environmental Science and Technology, 44, 23, (2014), 2577-2641 https://doi.org/10.1080/10643389.2013.829765
  21. Pamela Chelme-Ayala, Mohamed Gamal El-Din, Daniel W. Smith, Kinetics and mechanism of the degradation of two pesticides in aqueous solutions by ozonation, Chemosphere, 78, 5, (2010), 557-562 https://doi.org/10.1016/j.chemosphere.2009.11.014
  22. Panda Debabrata, Manickam Sivakumar, Sonochemical degradation of endocrine-disrupting organochlorine pesticide Dicofol: Investigations on the transformation pathways of dechlorination and the influencing operating parameters, Chemosphere, 204, (2018), 101-108 https://doi.org/10.1016/j.chemosphere.2018.04.014
  23. Busra Sonmez Baghirzade, Ulku Yetis, Filiz B. Dilek, Imidacloprid elimination by O3 and O3/UV: kinetics study, matrix effect, and mechanism insight, Environmental Science and Pollution Research, 28, 19, (2021), 24535-24551 https://doi.org/10.1007/s11356-020-09355-2
  24. R. Pandiselvam, R. Kaavya, Yasendra Jayanath, Kornautchaya Veenuttranon, Piraya Lueprasitsakul, V. Divya, Anjineyulu Kothakota, S. V. Ramesh, Ozone as a novel emerging technology for the dissipation of pesticide residues in foods–a review, Trends in Food Science & Technology, 97, (2020), 38-54 https://doi.org/10.1016/j.tifs.2019.12.017
  25. Amar L. Patil, Pankaj N. Patil, Parag R. Gogate, Degradation of imidacloprid containing wastewaters using ultrasound based treatment strategies, Ultrasonics sonochemistry, 21, 5, (2014), 1778-1786 https://doi.org/10.1016/j.ultsonch.2014.02.029
  26. Mehmet Fatih Cengiz, Mehmet Başlar, Onur Basançelebi, Mahmut Kılıçlı, Reduction of pesticide residues from tomatoes by low intensity electrical current and ultrasound applications, Food chemistry, 267, (2018), 60-66 https://doi.org/10.1016/j.foodchem.2017.08.031
  27. Marc-Olivier Buffle, Urs von Gunten, Phenols and amine induced HO• generation during the initial phase of natural water ozonation, Environmental Science & Technology, 40, 9, (2006), 3057-3063 https://doi.org/10.1021/es052020c
  28. Tobias Nöthe, Hans Fahlenkamp, Clemens von Sonntag, Ozonation of wastewater: rate of ozone consumption and hydroxyl radical yield, Environmental Science & Technology, 43, 15, (2009), 5990-5995 https://doi.org/https://doi.org/10.1021/es900825f
  29. Qinghua Zhao, Yanan Ge, Peng Zuo, Dong Shi, Shouhua Jia, Degradation of thiamethoxam in aqueous solution by ozonation: influencing factors, intermediates, degradation mechanism and toxicity assessment, Chemosphere, 146, (2016), 105-112 https://doi.org/10.1016/j.chemosphere.2015.09.009
  30. Teresa González, Joaquin R. Dominguez, Sergio Correia, Neonicotinoids removal by associated binary, tertiary and quaternary advanced oxidation processes: Synergistic effects, kinetics and mineralization, Journal of Environmental Management, 261, (2020), 110156 https://doi.org/10.1016/j.jenvman.2020.110156
  31. Meghdad Pirsaheb, Negin Moradi, Sonochemical degradation of pesticides in aqueous solution: Investigation on the influence of operating parameters and degradation pathway–A systematic review, RSC Advances, 10, 13, (2020), 7396-7423 https://doi.org/10.1039/c9ra11025a
  32. Manisha V. Bagal, Parag R. Gogate, Sonochemical degradation of alachlor in the presence of process intensifying additives, Separation and Purification Technology, 90, (2012), 92-100 https://doi.org/10.1016/j.seppur.2012.02.019
  33. Keisuke Ikehata, Mohamed Gamal El-Din, Aqueous pesticide degradation by ozonation and ozone-based advanced oxidation processes: a review (part II), Ozone: Science & Engineering, 27, 3, (2005), 173-202 https://doi.org/10.1080/01919510590945732
  34. Qinggong Ren, Chong Yin, Zhihui Chen, Maocun Cheng, Yuting Ren, Xiaoyan Xie, Yuheng Li, Xi Zhao, Ling Xu, Hongshun Yang, Efficient sonoelectrochemical decomposition of chlorpyrifos in aqueous solution, Microchemical Journal, 145, (2019), 146-153 https://doi.org/10.1016/j.microc.2018.10.032
  35. European Commission, in: E. Commission (Ed.) No. Sante/11813/2017, 2017
  36. Marc Bourgin, Frédéric Violleau, Laurent Debrauwer, Joël Albet, Ozonation of imidacloprid in aqueous solutions: Reaction monitoring and identification of degradation products, Journal of Hazardous Materials, 190, 1, (2011), 60-68 https://doi.org/10.1016/j.jhazmat.2011.02.065
  37. Romenique da Silva de Freitas, Lêda Rita D'Antonino Faroni, Maria Eliana Lopes Ribeiro de Queiroz, Fernanda Fernandes Heleno, Lucas Henrique Figueiredo Prates, Degradation kinetics of pirimiphos-methyl residues in maize grains exposed to ozone gas, Journal of Stored Products Research, 74, (2017), 1-5 https://doi.org/10.1016/j.jspr.2017.08.008

Last update:

No citation recorded.

Last update: 2024-03-27 14:39:07

No citation recorded.