skip to main content

Antibacterial Activities of Micromonospora sp. 2310 Isolated from Marine Sediment, Baru Island, West Kalimantan

Department of Chemistry, Faculty of Mathematics and Natural Sciences, Tanjungpura University, Pontianak, Indonesia

Received: 27 Jul 2021; Revised: 24 Jan 2022; Accepted: 26 Jan 2022; Published: 31 Jan 2022.
Open Access Copyright 2022 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

The increase in cases of antibiotic resistance and the discoveries cessation of new classes of antibiotics encourages the exploration of various microorganism sources from unique environments to produce antimicrobial compounds. This study aimed to characterize actinobacteria isolated from marine sediment and evaluate the best medium and incubation time for its antibacterial activities. The sediment sample collected from Buru Island, West Kalimantan, was isolated actinobacteria and characterized based on morphological, biochemical, and molecular (16S rRNA gene) approaches. Antibacterial activities were tested using the well-diffusion methods. Twelve suspected colonies were successfully purified. Isolate 2310, which showed a different morphology colony, was close to Micromonospora based on morphological, biochemical, and 16S rRNA gene analysis and called Micromonospora sp. 2310. Extract isolate 2310 prepared from AM medium showed the best medium for antibacterial activities compared with the other media due to activity against 5 of 6 bacteria, namely Staphylococcus aureus ATCC 12600, Bacillus subtilis ATCC 6051, Salmonella enterica ATCC 14028, Escherichia coli ATCC 11775, Pseudomonas aeruginosa ATCC 9721 except Mycobacterium smegmatis ATCC 14468. Therefore, Micromonospora sp. 2310 could be considered a great potential antibacterial producer.

Fulltext View|Download
Keywords: Antibacterial activities; Micromonospora; Actinobacteria; agar well diffusion method
Funding: Tanjungpura University

Article Metrics:

  1. Vo Van Giau, Seong Soo A. An, John Hulme, Recent advances in the treatment of pathogenic infections using antibiotics and nano-drug delivery vehicles, Drug Design, Development and Therapy, 13, (2019), 327–343 https://doi.org/10.2147/DDDT.S190577
  2. Andie S. Lee, Hermínia de Lencastre, Javier Garau, Jan Kluytmans, Surbhi Malhotra-Kumar, Andreas Peschel, Stephan Harbarth, Methicillin-resistant Staphylococcus aureus, Nature Reviews Disease Primers, 4, 1, (2018), 1-23 https://doi.org/10.1038/nrdp.2018.33
  3. William R. Miller, Jose M. Munita, Cesar A. Arias, Mechanisms of antibiotic resistance in enterococci, Expert Review of Anti-infective Therapy, 12, 10, (2014), 1221-1236 https://doi.org/10.1586/14787210.2014.956092
  4. Katrina Browne, Sudip Chakraborty, Renxun Chen, Mark D. P. Willcox, David StClair Black, William R. Walsh, Naresh Kumar, A new era of antibiotics: The clinical potential of antimicrobial peptides, International Journal of Molecular Sciences, 21, 19, (2020), 1-23 https://doi.org/10.3390/ijms21197047
  5. Matthew I. Hutchings, Andrew W. Truman, Barrie Wilkinson, Antibiotics: past, present and future, Current Opinion in Microbiology, 51, (2019), 72-80 https://doi.org/10.1016/j.mib.2019.10.008
  6. Mysoon Al-Ansari, Mani Kalaiyarasi, Mohammed A. Almalki, Ponnuswamy Vijayaraghavan, Optimization of medium components for the production of antimicrobial and anticancer secondary metabolites from Streptomyces sp. AS11 isolated from the marine environment, Journal of King Saud University - Science, 32, 3, (2020), 1993-1998 https://doi.org/10.1016/j.jksus.2020.02.005
  7. Dubravko Jelić, Roberto Antolović, From erythromycin to azithromycin and new potential ribosome-binding antimicrobials, Antibiotics (Basel), 5, 3, (2016), 1-13 https://doi.org/10.3390/antibiotics5030029
  8. Lynn L. Silver, Challenges of antibacterial discovery, Journal of Clinical Microbiology, 24, 1, (2011), 71-109 https://doi.org/10.1128/CMR.00030-10
  9. Mabrouka Benhadj, Djamila Gacemi-Kirane, Taha Menasria, Khaoula Guebla, Zina Ahmane, Screening of rare actinomycetes isolated from natural wetland ecosystem (Fetzara Lake, northeastern Algeria) for hydrolytic enzymes and antimicrobial activities, Journal of King Saud University - Science, 31, 4, (2019), 706-712 https://doi.org/10.1016/j.jksus.2018.03.008
  10. Jubilee Purkayastha, Bioprospecting of indigenous bioresources of North-East India, Springer, 2016, http://dx.doi.org/10.1007/978-981-10-0620-3
  11. Panchanathan Manivasagan, Jayachandran Venkatesan, Kannan Sivakumar, Se-Kwon Kim, Pharmaceutically active secondary metabolites of marine actinobacteria, Microbiological Research, 169, 4, (2014), 262-278 https://doi.org/10.1016/j.micres.2013.07.014
  12. Dong-Bo Xu, Wan-Wan Ye, Ying Han, Zi-Xin Deng, Kui Hong, Natural products from mangrove actinomycetes, Marine Drugs, 12, 5, (2014), 2590-2613 http://dx.doi.org/10.3390/md12052590
  13. Yan Sheng, Phillip W. Lam, Salmah Shahab, Dwi Andreas Santosa, Philip J. Proteau, T. Mark Zabriskie, Taifo Mahmud, Identification of elaiophylin skeletal variants from the Indonesian Streptomyces sp. ICBB 9297, Journal of Natural Products, 78, 11, (2015), 2768-2775 https://doi.org/10.1021/acs.jnatprod.5b00752
  14. Ken-ichi Fukuhara, Hidetsugu Murai, Sawao Murao, Amylostatins, other amylase inhibitors produced by Streptomyces diastaticus subsp. Amylostaticus No. 2476, Agricultural and Biological Chemistry, 46, 8, (1982), 2021-2030 https://doi.org/10.1080/00021369.1982.10865392
  15. N. Amaresan, M. Senthil Kumar, Kannepalli Annapurna, Krishna Kumar, N. Sankaranaryanan, Beneficial microbes in agro-ecology: bacteria and fungi, Academic Press, 2020, https://doi.org/10.1016/C2020-0-00594-3
  16. F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus, W. Li, R. Lopez, H. McWilliam, M. Remmert, J. Söding, J. D. Thompson, D. G. Higgins, Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega, Molecular Systems Biology 7, 1, (2011), 1-6 http://dx.doi.org/10.1038/msb.2011.75
  17. Naruya Saitou, Masatoshi Nei, The neighbor-joining method: a new method for reconstructing phylogenetic trees, Molecular Biology and Evolution, 4, 4, (1987), 406-425 https://doi.org/10.1093/oxfordjournals.molbev.a040454
  18. Sudhir Kumar, Glen Stecher, Michael Li, Christina Knyaz, Koichiro Tamura, MEGA X: molecular evolutionary genetics analysis across computing platforms, Molecular Biology and Evolution, 35, 6, (2018), 1547-1549 https://doi.org/10.1093/molbev/msy096
  19. Holger Rheims, Peter Schumann, Manfred Rohde, Erko Stackebrandt, Verrucosispora gifhornensis gen. nov., sp. nov., a new member of the actinobacterial family Micromonosporaceae, International Journal of Systematic Bacteriology, 48, 4, (1998), 1119-1127 https://doi.org/10.1099/00207713-48-4-1119
  20. Pei Huang, Feng Xie, Biao Ren, Qian Wang, Jian Wang, Qi Wang, Wael M. Abdel-Mageed, Miaomiao Liu, Jianying Han, Ayokunmi Oyeleye, Anti-MRSA and anti-TB metabolites from marine-derived Verrucosispora sp. MS100047, Applied Microbiology and Biotechnology, 100, 17, (2016), 7437-7447 https://doi.org/10.1007/s00253-016-7406-y
  21. Jongsik Chun, Aharon Oren, Antonio Ventosa, Henrik Christensen, David Ruiz Arahal, Milton S. da Costa, Alejandro P. Rooney, Hana Yi, Xue-Wei Xu, Sofie De Meyer, Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes, International Journal of Systematic Evolutionary Microbiology, 68, 1, (2018), 461-466 https://doi.org/10.1099/ijsem.0.002516
  22. Risa Nofiani, Alexandra J. Weisberg, Takeshi Tsunoda, Ruqiah Ganda Putri Panjaitan, Ridho Brilliantoro, Jeff H. Chang, Benjamin Philmus, Taifo Mahmud, Antibacterial Potential of Secondary Metabolites from Indonesian Marine Bacterial Symbionts, International Journal of Microbiology, 2020, (2020), 1-11 http://dx.doi.org/10.1155/2020/8898631

Last update:

No citation recorded.

Last update: 2024-04-26 03:34:44

No citation recorded.