skip to main content

Functionalized Alkaline Lignin for Removal of Lead in Aqueous Solution

1Research Center for Chemistry, National Research and Innovation Agency Republic of Indonesia (BRIN), , Indonesia

2Research Center for Chemistry, National Research and Innovation Agency Republic of Indonesia (BRIN), Kawasan Puspiptek, Serpong, South Tangerang, Indonesia

Received: 3 Oct 2021; Revised: 11 Apr 2022; Accepted: 23 May 2022; Published: 31 May 2022.
Open Access Copyright 2022 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Lignin, the second most abundant natural polymeric globally, is considered the source of the renewable aromatic compound. It serves as an alternative feedstock for the elaboration of chemicals and polymers. However, even until now, it is still primarily used as a low-value fuel for boilers. In the current research, alkaline lignin was modified and used as an adsorbent for removing lead (Pb) in an aqueous solution. The functionalized alkaline lignin (FAL) was prepared by a Mannich reaction with formaldehyde and dimethylamine, followed by esterification of carbon disulfide. The FAL was characterized using CHN elemental analysis, X-Ray Fluorescence (XRF), Scanning Electron Microscopy (SEM), and Fourier Transform Infrared (FT-IR) to observe the changes in composition, morphology, and chemical structure. The analysis revealed that alkaline lignin was successfully modified using amine and carbon disulfide. The adsorption study shows that the lead concentration reduced to 93.7% after 2 hours in contact with FAL. The FAL adsorption capacity could obtain 0.44 mmol/g of lead.

Fulltext View|Download
Keywords: lignin; functionalization; adsorbent; adsorption
Funding: Lembaga Pengelola Dana Pendidikan (LPDP) under contract PRJ-65/LPDP/2020

Article Metrics:

  1. Geoffrey J. May, Alistair Davidson, Boris Monahov, Lead batteries for utility energy storage: A review, Journal of Energy Storage, 15, (2018), 145-157 https://doi.org/10.1016/j.est.2017.11.008
  2. David O'Connor, Deyi Hou, Jing Ye, Yunhui Zhang, Yong Sik Ok, Yinan Song, Frederic Coulon, Tianyue Peng, Li Tian, Lead-based paint remains a major public health concern: A critical review of global production, trade, use, exposure, health risk, and implications, Environment International, 121, 1, (2018), 85-101 https://doi.org/10.1016/j.envint.2018.08.052
  3. Ramlia Ramlia, Abidin Djalla, Uji Kandungan Logam Berat Timbal (Pb) di Perairan Wilayah Pesisir Parepare, Jurnal Ilmiah Manusia Dan Kesehatan, 1, 3, (2018), 255-264 https://doi.org/10.31850/makes.v1i3.111
  4. Kementerian Kesehatan, Peraturan Menteri Kesehatan tentang Standar Baku Mutu Kesehatan Lingkungan dan Persyaratan Kesehatan Air Untuk Keperluan Higiene Sanitasi, Kolam Renang, Solus Per Aqua, dan Pemandian Umum, 2017
  5. Akhmad Mustafa, Hasnawi Hasnawi, Tarunamulia Tarunamulia, Muhammad Banda Selamat, Muhammad Farid Samawi, Distribusi polutan logam berat di perairan pantai yang digunakan untuk memasok tambak udang terdekat dan mitigasinya di Kecamatan Jabon Provinsi Jawa Timur, Jurnal Riset Akuakultur, 14, 2, (2019), 127-138
  6. Marzie Boskabady, Narges Marefati, Tahereh Farkhondeh, Farzaneh Shakeri, Alieh Farshbaf, Mohammad Hossein Boskabady, The effect of environmental lead exposure on human health and the contribution of inflammatory mechanisms, a review, Environment International, 120, (2018), 404-420 https://doi.org/10.1016/j.envint.2018.08.013
  7. Qiao Zhao, Richard A. Dixon, Transcriptional networks for lignin biosynthesis: more complex than we thought?, Trends in Plant Science, 16, 4, (2011), 227-233 https://doi.org/10.1016/j.tplants.2010.12.005
  8. Ruben Vanholme, Kris Morreel, John Ralph, Wout Boerjan, Lignin engineering, Current Opinion in Plant Biology, 11, 3, (2008), 278-285 https://doi.org/10.1016/j.pbi.2008.03.005
  9. Scott E. Sattler, Deanna L. Funnell-Harris, Modifying lignin to improve bioenergy feedstocks: strengthening the barrier against pathogens?, Frontiers in Plant Science, 4, 70, (2013), 1-8 https://doi.org/10.3389/fpls.2013.00070s
  10. Maxim V. Galkin, Supaporn Sawadjoon, Volker Rohde, Monali Dawange, Joseph S.M. Samec, Mild heterogeneous palladium‐catalyzed cleavage of β‐O‐4′‐ether linkages of lignin model compounds and native lignin in air, ChemCatChem, 6, 1, (2014), 179-184 https://doi.org/10.1002/cctc.201300540
  11. Joseph Zakzeski, Pieter C. A. Bruijnincx, Anna L. Jongerius, Bert M. Weckhuysen, The catalytic valorization of lignin for the production of renewable chemicals, Chemical Reviews, 110, 6, (2010), 3552-3599 https://doi.org/10.1021/cr900354u
  12. Ding Wang, Sahng Ha Lee, Jinhyun Kim, Chan Beum Park, “Waste to wealth”: lignin as a renewable building block for energy harvesting/storage and environmental remediation, ChemSusChem, 13, 11, (2020), 2807-2827 https://doi.org/10.1002/cssc.202000394
  13. Yanqiao Jin, Chaomin Zeng, Qiu-Feng Lü, Yan Yu, Efficient adsorption of methylene blue and lead ions in aqueous solutions by 5-sulfosalicylic acid modified lignin, International Journal of Biological Macromolecules, 123, (2019), 50-58 https://doi.org/10.1016/j.ijbiomac.2018.10.213
  14. Tiantian Li, Zhaohui Tong, Qingzhu Zheng, Hanxi Bao, Arianna Partow, Shanyu Meng, Lixia Li, Yuncong C. Li, Fabrication of a Lignin-Based Magnetic Nanocomposite Adsorbent to Recover Phosphorus in Water for Agricultural Reuse, ACS Sustainable Chemistry & Engineering, 9, 31, (2021), 10468-10478 https://doi.org/10.1021/acssuschemeng.1c01492
  15. Yang Liu, Tianjue Hu, Zhengping Wu, Guangming Zeng, Danlian Huang, Ying Shen, Xiaoxiao He, Mingyong Lai, Yibin He, Study on biodegradation process of lignin by FTIR and DSC, Environmental Science and Pollution Research, 21, 24, (2014), 14004-14013 https://doi.org/10.1007/s11356-014-3342-5
  16. Chao Liu, Ru-Na Jin, Xiao-kun Ouyang, Yang-Guang Wang, Adsorption behavior of carboxylated cellulose nanocrystal—polyethyleneimine composite for removal of Cr(VI) ions, Applied Surface Science, 408, (2017), 77-87 https://doi.org/10.1016/j.apsusc.2017.02.265
  17. H. O. Desseyn, A. C. Fabretti, F. Forghieri, C. Preti, Isotopic infrared study of some nickel(II) and copper(II) complexes containing heterocyclic dithiocarbamate ligands, Spectrochimica Acta Part A: Molecular Spectroscopy, 41, 9, (1985), 1105-1108 https://doi.org/10.1016/0584-8539(85)80012-X
  18. Matthew M. Matlock, Brock S. Howerton, Kevin R. Henke, David A. Atwood, A pyridine-thiol ligand with multiple bonding sites for heavy metal precipitation, Journal of Hazardous Materials, 82, 1, (2001), 55-63 https://doi.org/10.1016/S0304-3894(00)00353-8
  19. Marina B. Šćiban, Mile T. Klašnja, Mirjana G. Antov, Study of the biosorption of different heavy metal ions onto Kraft lignin, Ecological Engineering, 37, 12, (2011), 2092-2095 https://doi.org/10.1016/j.ecoleng.2011.08.006
  20. S. B. Lalvani, T. S. Wiltowski, D. Murphy, L. S. Lalvani, Metal removal from process water by lignin, Environmental Technology, 18, 11, (1997), 1163-1168 https://doi.org/10.1080/09593331808616636
  21. Hengky Harmita, K. G. Karthikeyan, XueJun Pan, Copper and cadmium sorption onto kraft and organosolv lignins, Bioresource Technology, 100, 24, (2009), 6183-6191 https://doi.org/10.1016/j.biortech.2009.06.093
  22. Qiaorui Wang, Chunli Zheng, Zhenxing Shen, Qiang Lu, Chi He, Tian C. Zhang, Jianhui Liu, Polyethyleneimine and carbon disulfide co-modified alkaline lignin for removal of Pb2+ ions from water, Chemical Engineering Journal, 359, (2019), 265-274 https://doi.org/10.1016/j.cej.2018.11.130

Last update:

  1. Optimization of used cooking oil for biodiesel using CaO-derived of bovine bone catalyst

    Joni Prasetyo, Diah Kusmardini, Tantri Nailis Sa'adah, Dewi Puspita Sari, Deliana Dahnum, Nesha Adelia, Ely Kurniati, Ahmad Wibisana, Herman Hidayat, Sun Theo Constan Lotebulo Ndruru. South African Journal of Chemical Engineering, 48 , 2024. doi: 10.1016/j.sajce.2024.01.008

Last update: 2024-11-13 18:19:14

No citation recorded.