skip to main content

Catalytic hydrogenation of stearic acid to 1-octadecanol using supported bimetallic Pd–Sn(3.0)/γ–Al2O3 catalyst

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat University, Jl. A. Yani Km 36.0 Banjarbaru 70714, South Kalimantan, Indonesia

2Catalysis for Sustainable Energy and Environment (CATSuRe), Wetland-based Material Research Center, Lambung Mangkurat University, Banjarbaru 70714, South Kalimantan, Indonesia

Received: 4 Jan 2022; Revised: 20 Feb 2022; Accepted: 24 Feb 2022; Published: 28 Feb 2022.
Open Access Copyright 2022 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract
Supported bimetallic palladium-tin catalyst on gamma-alumina (γ-Al2O3) (denoted as Pd–Sn(3.0)/γ-Al2O3; Pd = 5%wt and Pd/Sn molar ratio is 3.0) has been synthesized via the hydrothermal method at a temperature of 423 K for 24 h and reduced with H2 at 673 K for 3 h. The XRD patterns of the samples showed typical diffraction peaks of support γ-Al2O3, metallic Pd, Sn, and Pd–Sn alloy phases. Diffraction peaks of metallic Pd were observed at 2θ = 39.8°; 46.6°; and 68.0°, which can be attributed to the Pd(111), Pd(200), and Pd(220), respectively, while the diffraction peaks at 2θ = 39.8° and 41.0° can be attributed to Pd2Sn and Pd3Sn2, respectively, which may overlap with the Pd(111) species. The ammonia desorption and pyridine adsorption profiles showed Lewis and Brönsted acid sites. The specific surface area (SBET) of Pd–Sn(3.0)/γ-Al2O3 catalyst was 117.83 m2/g which is dominated by a micropore structure. The highest conversion of stearic acid was 99.1% with a yield of 1-octadecanol 43.2% was obtained at temperature 513 K, initial H2 pressure of 2.0 MPa, a reaction time of 13 h, and in 2-propanol/water (4.0:1.0 v/v) solvent.
Fulltext View|Download
Keywords: Hydrogenation; Stearic Acid; 1–Octadecanol; Bimetallic Pd–Sn Catalyst
Funding: BPDP Kelapa Sawit; Ministry of Finance; Ministry of Research, Technology, and Higher Education under contract DIPA-042.06-1.401516/2020.

Article Metrics:

  1. BPDP, Roadmap Penelitian dan Pengembangan Sawit, (2021)
  2. Wayne K. Craig, Douglas W. Soveran, Production of hydrocarbons with a relatively high cetane rating, Canada Minister of Energy Mines and Resources, The United States, 1991
  3. Siswati Lestari, Päivi Mäki‐Arvela, Jorge Beltramini, GQ Max Lu, Dmitry Yu Murzin, Transforming triglycerides and fatty acids into biofuels, ChemSusChem: Chemistry & Sustainability Energy & Materials, 2, 12, (2009), 1109-1119 https://doi.org/10.1002/cssc.200900107
  4. Yasuyuki Takeda, Masazumi Tamura, Yoshinao Nakagawa, Kazu Okumura, Keiichi Tomishige, Characterization of Re–Pd/SiO2 catalysts for hydrogenation of stearic acid, ACS Catalysis, 5, 11, (2015), 7034-7047 https://doi.org/10.1021/acscatal.5b01054
  5. Thorsten vom Stein, Markus Meuresch, Dominik Limper, Marc Schmitz, Markus Hölscher, Jacorien Coetzee, David J. Cole-Hamilton, Jürgen Klankermayer, Walter Leitner, Highly versatile catalytic hydrogenation of carboxylic and carbonic acid derivatives using a Ru-triphos complex: molecular control over selectivity and substrate scope, Journal of the American Chemical Society, 136, 38, (2014), 13217-13225 https://doi.org/10.1021/ja506023f
  6. Sumit Chakraborty, Huiguang Dai, Papri Bhattacharya, Neil T. Fairweather, Michael S. Gibson, Jeanette A. Krause, Hairong Guan, Iron-based catalysts for the hydrogenation of esters to alcohols, Journal of the American Chemical Society, 136, 22, (2014), 7869-7872 https://doi.org/10.1021/ja504034q
  7. Zhicheng Luo, Qiming Bing, Jiechen Kong, Jing-yao Liu, Chen Zhao, Mechanism of supported Ru3Sn7 nanocluster-catalyzed selective hydrogenation of coconut oil to fatty alcohols, Catalysis Science & Technology, 8, 5, (2018), 1322-1332 https://doi.org/10.1039/C8CY00037A
  8. James Pritchard, Georgy A. Filonenko, Robbert Van Putten, Emiel J. M. Hensen, Evgeny A. Pidko, Heterogeneous and homogeneous catalysis for the hydrogenation of carboxylic acid derivatives: history, advances and future directions, Chemical Society Reviews, 44, 11, (2015), 3808-3833 https://doi.org/10.1039/C5CS00038F
  9. Karl Folkers, Homer Adkins, The catalytic hydrogenation of esters to alcohols. II, Journal of the American Chemical Society, 54, 3, (1932), 1145-1154 https://doi.org/10.1021/ja01342a043
  10. Ross D. Rieke, Deepak S. Thakur, Brian D. Roberts, Geoffrey T. White, Fatty methyl ester hydrogenation to fatty alcohol part I: correlation between catalyst properties and activity/selectivity, Journal of the American Oil Chemists' Society, 74, 4, (1997), 333-339 https://doi.org/10.1007/s11746-997-0088-y
  11. Ross D. Rieke, Deepak S. Thakur, Brian D. Roberts, Geoffrey T. White, Fatty methyl ester hydrogenation to fatty alcohol part II: process issues, Journal of the American Oil Chemists' Society, 74, 4, (1997), 341-345 https://doi.org/10.1007/s11746-997-0089-x
  12. Haresh G. Manyar, Cristina Paun, Rashidah Pilus, David W. Rooney, Jillian M. Thompson, Christopher Hardacre, Highly selective and efficient hydrogenation of carboxylic acids to alcohols using titania supported Pt catalysts, Chemical Communications, 46, 34, (2010), 6279-6281 https://doi.org/10.1039/C0CC01365J
  13. Yasuyuki Takeda, Yoshinao Nakagawa, Keiichi Tomishige, Selective hydrogenation of higher saturated carboxylic acids to alcohols using a ReOx–Pd/SiO2 catalyst, Catalysis Science & Technology, 2, 11, (2012), 2221-2223 https://doi.org/10.1039/C2CY20302B
  14. Makoto Toba, Shin-ichi Tanaka, Shu-ichi Niwa, Fujio Mizukami, Zsuzsanna Koppány, László Guczi, Kien-Yoo Cheah, Thin-Sue Tang, Synthesis of alcohols and diols by hydrogenation of carboxylic acids and esters over Ru–Sn–Al2O3 catalysts, Applied Catalysis A: General, 189, 2, (1999), 243-250 https://doi.org/10.1016/S0926-860X(99)00281-1
  15. Rodiansono Rodiansono, Muhammad Iqbal Pratama, Maria Dewi Astuti, Abdullah Abdullah, Agung Nugroho, Susi Susi, Selective Hydrogenation of Dodecanoic Acid to Dodecane-1-ol Catalyzed by Supported Bimetallic Ni-Sn Alloy, Bulletin of Chemical Reaction Engineering & Catalysis, 13, 2, (2018), 311-319 https://doi.org/10.9767/bcrec.13.2.1790.311-319
  16. A. P. Damayanti, H. P. Dewi, Selective hydrogenation of levulinic acid to γ-valerolactone using bimetallic Pd-Fe catalyst supported on titanium oxide, IOP Conference Series: Materials Science and Engineering, 2020 https://doi.org/10.1088/1757-899X/980/1/012013
  17. Rodiansono Rodiansono, Elisa Hayati, Atina Sabila Azzahra, Maria Dewi Astuti, Kamilia Mustikasari, Sadang Husain, Sutomo Sutomo, Selective Hydrogenation of Stearic Acid to 1-Octadecanol Using Bimetallic Palladium-Tin Supported on Carbon Catalysts at Mild Reaction Conditions, Bulletin of Chemical Reaction Engineering & Catalysis, 16, 4, (2021), 888-903 https://doi.org/10.9767/bcrec.16.4.11895.888-903
  18. Syahrul Khairi, Takayoshi Hara, Nobuyuki Ichikuni, Shogo Shimazu, Highly efficient and selective hydrogenation of unsaturated carbonyl compounds using Ni–Sn alloy catalysts, Catalysis Science & Technology, 2, 10, (2012), 2139-2145 https://doi.org/10.1039/C2CY20216F
  19. Seymour Lowell, Joan E. Shields, Martin A. Thomas, Matthias Thommes, Characterization of porous solids and powders: surface area, pore size and density, Kluwer Academic Publisher, Dordrecht, The Netherlands., 2006, https://doi.org/10.1007/978-1-4020-2303-3
  20. Gloria Lourdes Dimas-Rivera, Javier Rivera De la Rosa, Carlos J. Lucio-Ortiz, Daniela Xulú Martínez-Vargas, Ladislao Sandoval-Rangel, Domingo Ixtcoatl García Gutiérrez, Carolina Solis Maldonado, Bimetallic Pd-Fe supported on γ-Al2O3 catalyst used in the ring opening of 2-methylfuran to selective formation of alcohols, Applied Catalysis A: General, 543, (2017), 133-140 https://doi.org/10.1016/j.apcata.2017.06.019
  21. Anne Galarneau, François Villemot, Jeremy Rodriguez, François Fajula, Benoit Coasne, Validity of the t-plot method to assess microporosity in hierarchical micro/mesoporous materials, Langmuir, 30, 44, (2014), 13266-13274 https://doi.org/10.1021/la5026679
  22. Emil Dumitriu, Vasile Hulea, Effects of channel structures and acid properties of large-pore zeolites in the liquid-phase tert-butylation of phenol, Journal of Catalysis, 218, 2, (2003), 249-257 https://doi.org/10.1016/S0021-9517(03)00159-3
  23. Jingjuan Wang, Petr A. Chernavskii, Ye Wang, Andrei Y. Khodakov, Influence of the support and promotion on the structure and catalytic performance of copper–cobalt catalysts for carbon monoxide hydrogenation, Fuel, 103, (2013), 1111-1122 https://doi.org/10.1016/j.fuel.2012.07.055
  24. Francesco Arena, Roberto Dario, Adolfo Parmaliana, A characterization study of the surface acidity of solid catalysts by temperature programmed methods, Applied Catalysis A: General, 170, 1, (1998), 127-137 https://doi.org/10.1016/S0926-860X(98)00041-6
  25. Nahid Khandan, Mohammad Kazemeini, Mahmoud Aghaziarati, Determining an optimum catalyst for liquid-phase dehydration of methanol to dimethyl ether, Applied Catalysis A: General, 349, 1-2, (2008), 6-12 https://doi.org/10.1016/j.apcata.2008.07.029
  26. Powder Diffraction File, in: Pennsylvania, USA
  27. Raghu V. Maligal-Ganesh, Chaoxian Xiao, Tian Wei Goh, Lin-Lin Wang, Jeffrey Gustafson, Yuchen Pei, Zhiyuan Qi, Duane D. Johnson, Shiran Zhang, Franklin Tao, A ship-in-a-bottle strategy to synthesize encapsulated intermetallic nanoparticle catalysts: exemplified for furfural hydrogenation, ACS Catalysis, 6, 3, (2016), 1754-1763 https://doi.org/10.1021/acscatal.5b02281
  28. Dmitry E. Doronkin, Sheng Wang, Dmitry I. Sharapa, Benedikt J. Deschner, Thomas L. Sheppard, Anna Zimina, Felix Studt, Roland Dittmeyer, Silke Behrens, Jan-Dierk Grunwaldt, Dynamic structural changes of supported Pd, PdSn, and PdIn nanoparticles during continuous flow high pressure direct H2O2 synthesis, Catalysis Science & Technology, 10, 14, (2020), 4726-4742 https://doi.org/10.1039/D0CY00553C
  29. Rongrong Li, Jia Zhao, Deman Han, Xiaonian Li, Pd/C modified with Sn catalyst for liquid-phase selective hydrogenation of maleic anhydride to gamma-butyrolactone, Chinese Chemical Letters, 28, 6, (2017), 1330-1335 https://doi.org/10.1016/j.cclet.2017.04.028
  30. Nicholas Kaylor, Jiahan Xie, Yong-Su Kim, Hien N. Pham, Abhaya K. Datye, Yong-Kul Lee, Robert J. Davis, Vapor phase deoxygenation of heptanoic acid over silica-supported palladium and palladium-tin catalysts, Journal of Catalysis, 344, (2016), 202-212 https://doi.org/10.1016/j.jcat.2016.09.028
  31. Gwen J. S. Dawes, Elinor L. Scott, Jérôme Le Nôtre, Johan P. M. Sanders, Johannes H. Bitter, Deoxygenation of biobased molecules by decarboxylation and decarbonylation–a review on the role of heterogeneous, homogeneous and bio-catalysis, Green Chemistry, 17, 6, (2015), 3231-3250 https://doi.org/10.1039/C5GC00023H
  32. Jan W. Veldsink, Martin J. Bouma, Nils H. Schöön, Antonie A. C. M. Beenackers, Heterogeneous hydrogenation of vegetable oils: a literature review, Catalysis Reviews, 39, 3, (1997), 253-318 https://doi.org/10.1080/01614949709353778
  33. P. Mäki-Arvela, M. Snåre, K. Eränen, J. Myllyoja, D. Yu Murzin, Continuous decarboxylation of lauric acid over Pd/C catalyst, Fuel, 87, 17-18, (2008), 3543-3549 https://doi.org/10.1016/j.fuel.2008.07.004

Last update:

No citation recorded.

Last update: 2024-12-23 09:52:30

No citation recorded.