skip to main content

Antioxidant and Anticancer Activities of Sand Sea Cucumber (Holothuria scabra) Extracts using Wet Rendering Extraction Method

Research Center for Vaccine and Drug, Research Organization for Health, National Research and Innovation Agency (BRIN), Jl. Raya Jakarta-Bogor Km. 46, Cibinong-Bogor, West Java 16911, Indonesia

Received: 18 Apr 2022; Revised: 9 Sep 2022; Accepted: 20 Sep 2022; Published: 31 Jan 2023.
Open Access Copyright 2023 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Antioxidant and anticancer activities of sand sea cucumber Holothuria scabra (dried and fresh) extracts were studied. The highest extraction yield of sea cucumber H. scabra (3.9%) was obtained using dried H. scabra at 60oC. The highest antioxidant activity was found in fresh H. scabra extract at 60°C with an IC50 value of 629.89 ± 0.15 µg/mL using the ABTS method, and the highest antioxidant activity by DPPH method was found in dried H. scabra extract at 70°C with an IC50 value of 32017.18 ± 0.82 µg/mL. The best antioxidant activity based on FRAP and TBARS methods was found in fresh H. scabra extracts at 80°C, respectively. The highest total phenol and flavonoid contained in dried H. scabra extract were 317.54 ± 8.91 mg GAE/100 g sample and 247.56 ± 11.70 mg QE/100 g sample. H. scabra extracts inhibited more than 50% of the growth of the MDA-MB-231 cell line at concentrations of 25 and 50 μg/mL except for dried H. scabra extracts at 80°C. Similarly, the extracts showed the highest cytotoxic effect up to 100% at the highest concentration (100 μg/mL) except for dried H. scabra extracts at 70°C and 80°C.

Fulltext View|Download
Keywords: sea cucumber, Holothuria scabra, antioxidant, anticancer, wet rendering
Funding: Badan Riset dan Inovasi Nasional

Article Metrics:

  1. Widianingsih, Muhammad Zaenuri, Sutrisno Anggoro, Hermin Panca Sakti Kusumaningrum, Nutritional value of sea cucumber [Paracaudina australis (Semper, 1868)], Aquatic Procedia, 7, (2016), 271-276 https://doi.org/10.1016/j.aqpro.2016.07.038
  2. Ying Zhong, Muhammad Ahmad Khan, Fereidoon Shahidi, Compositional characteristics and antioxidant properties of fresh and processed sea cucumber (Cucumaria frondosa), Journal of Agricultural and Food Chemistry, 55, 4, (2007), 1188-1192 https://doi.org/10.1021/jf063085h
  3. Saksit Nobsathian, Patoomratana Tuchinda, Prasert Sobhon, Yotsawan Tinikul, Jaruwan Poljaroen, Ruchanok Tinikul, Morakot Sroyraya, Tanes Poomton, Supakant Chaichotranunt, An antioxidant activity of the whole body of Holothuria scabra, Chemical and Biological Technologies in Agriculture, 4, 1, (2017), 1-5 https://doi.org/10.1186/s40538-017-0087-7
  4. Hang Qi, Xiaolin Ji, Shan Liu, Dingding Feng, Xiufang Dong, Baoyu He, Janaswamy Srinivas, Chenxu Yu, Antioxidant and anti-dyslipidemic effects of polysaccharidic extract from sea cucumber processing liquor, Electronic Journal of Biotechnology, 28, (2017), 1-6 https://doi.org/10.1016/j.ejbt.2017.04.001
  5. Sara Bordbar, Farooq Anwar, Nazamid Saari, High-value components and bioactives from sea cucumbers for functional foods—a review, Marine Drugs, 9, 10, (2011), 1761-1805 https://doi.org/10.3390/md9101761
  6. Peck Loo Kiew, Mashitah Mat Don, Jewel of the seabed: sea cucumbers as nutritional and drug candidates, International Journal of Food Sciences and Nutrition, 63, 5, (2012), 616-636 https://doi.org/10.3109/09637486.2011.641944
  7. W. A. J. P. Wijesinghe, You Jin Jeon, Perumal Ramasamy, Mohd Effendy A. Wahid, Charles S. Vairappan, Anticancer activity and mediation of apoptosis in human HL-60 leukaemia cells by edible sea cucumber (Holothuria edulis) extract, Food Chemistry, 139, 1-4, (2013), 326-331 https://doi.org/10.1016/j.foodchem.2013.01.058
  8. Mike Kareh, Rana El Nahas, Lamis Al-Aaraj, Sara Al-Ghadban, Nataly Naser Al Deen, Najat Saliba, Marwan El-Sabban, Rabih Talhouk, Anti-proliferative and anti-inflammatory activities of the sea cucumber Holothuria polii aqueous extract, SAGE Open Medicine, 6, (2018), https://doi.org/10.1177/2050312118809541
  9. Osama Y. Althunibat, Ridzwan Bin Hashim, Muhammad Taher, Jamaludin Mohd Daud, Masa-Aki Ikeda, B. I. Zali, In vitro antioxidant and antiproliferative activities of three Malaysian sea cucumber species, European Journal of Scientific Research, 37, 3, (2009), 376-387
  10. Mariusz Gutowski, Sławomir Kowalczyk, A study of free radical chemistry: their role and pathophysiological significance, Acta Biochimica Polonica, 60, 1, (2013), 1-16 https://doi.org/10.18388/abp.2013_1944
  11. Barry Halliwell, Antioxidant defence mechanisms: from the beginning to the end (of the beginning), Free Radical Research, 31, 4, (1999), 261-272 https://doi.org/10.1080/10715769900300841
  12. Teresa Liliana Wargasetia, Sofy Permana, Widodo, The role of sea cucumber active compound and its derivative as an anti-cancer agent, Current Pharmacology Reports, 4, (2018), 27-32 https://doi.org/10.1007/s40495-018-0121-x
  13. Alexandra B. Roginsky, Xian-Zhong Ding, Carl Woodward, Michael B. Ujiki, Brahmchetna Singh, Richard H. Bell Jr, Peter Collin, Thomas E. Adrian, Anti-pancreatic cancer effects of a polar extract from the edible sea cucumber, Cucumaria frondosa, Pancreas, 39, 5, (2010), 646-652 https://doi.org/10.1097/mpa.0b013e3181c72baf
  14. E. S. Menchinskaya, E. A. Pislyagin, S. N. Kovalchyk, V. N. Davydova, A. S. Silchenko, S. A. Avilov, V. I. Kalinin, D. L. Aminin, Antitumor activity of cucumarioside A2-2, Chemotherapy, 59, 3, (2013), 181-191 https://doi.org/10.1159/000354156
  15. Nadia Al Marzouqi, Rabah Iratni, Abderrahim Nemmar, Kholoud Arafat, Mahmood Ahmed Al Sultan, Javed Yasin, Peter Collin, Jan Mester, Thomas E. Adrian, Samir Attoub, Frondoside A inhibits human breast cancer cell survival, migration, invasion and the growth of breast tumor xenografts, European Journal of Pharmacology, 668, 1-2, (2011), 25-34 https://doi.org/10.1016/j.ejphar.2011.06.023
  16. Qin Zhao, Zhi-dong Liu, Yong Xue, Jing-feng Wang, Hui Li, Qing-juan Tang, Yu-ming Wang, Ping Dong, Chang-hu Xue, Ds-echinoside A, a new triterpene glycoside derived from sea cucumber, exhibits antimetastatic activity via the inhibition of NF-κB-dependent MMP-9 and VEGF expressions, Journal of Zhejiang University Science B, 12, (2011), 534-544 https://doi.org/10.1631/jzus.B1000217
  17. Ekaterina S Menchinskaya, Dmitry L Aminin, Sergey A Avilov, Aleksandra S Silchenko, Pelageya V Andryjashchenko, Vladimir I Kalinin, Valentin A Stonik, Inhibition of tumor cells multidrug resistance by cucumarioside A2-2, frondoside A and their complexes with cholesterol, Natural Product Communications, 8, 10, (2013), 1934578X1300801009 https://doi.org/10.1177/1934578X1300801009
  18. Diah Anggraini Wulandari, Nunik Gustini, Tutik Murniasih, Asep Bayu, Martha Sari, Gita Syahputra, Iskandar Azmy Harahap, Abdullah Rasyid, Sari Budi Moria, Siti Irma Rahmawati, Nutritional value and biological activities of sea cucumber Holothuria scabra cultured in the open pond system, Journal of Aquatic Food Product Technology, 31, 6, (2022), 599-614 https://doi.org/10.1080/10498850.2022.2082902
  19. Nurlaylatul Akmal Mohd Yusoh, Rohaida Che Man, Nurul Aini Mohd Azman, Shalyda Md Shaarani, Siti Kholijah Abdul Mudalip, Siti Zubaidah Sulaiman, Zatul Iffah Mohd Arshad, Recovery of antioxidant from Decapterus Macarellus waste using wet rendering method, Materials Today: Proceedings, 57, (2022), 1382-1388 https://doi.org/10.1016/j.matpr.2022.03.173
  20. Pitchaya Santativongchai, Wirasak Fungfuang, Visanu Boonyawiwat, Urai Pongchairerk, Phitsanu Tulayakul, Comparison of physicochemical properties and fatty acid composition of crocodile oil (Crocodylus siamensis) extracted by using various extraction methods, International Journal of Food Properties, 23, 1, (2020), 1465-1474 https://doi.org/10.1080/10942912.2020.1814324
  21. Prapaporn Jattujan, Pawanrat Chalorak, Tanapan Siangcham, Kant Sangpairoj, Saksit Nobsathian, Tanate Poomtong, Prasert Sobhon, Krai Meemon, Holothuria scabra extracts possess anti-oxidant activity and promote stress resistance and lifespan extension in Caenorhabditis elegans, Experimental Gerontology, 110, (2018), 158-171 https://doi.org/10.1016/j.exger.2018.06.006
  22. Alam Zeb, Fareed Ullah, A simple spectrophotometric method for the determination of thiobarbituric acid reactive substances in fried fast foods, Journal of Analytical Methods in Chemistry, 2016, (2016), 9412767 https://doi.org/10.1155/2016/9412767
  23. Satvir Sekhon-Loodu, H. P. Vasantha Rupasinghe, Evaluation of antioxidant, antidiabetic and antiobesity potential of selected traditional medicinal plants, Frontiers in Nutrition, 6, 53, (2019), https://doi.org/10.3389/fnut.2019.00053
  24. Moragot Chatatikun, Anchalee Chiabchalard, Phytochemical screening and free radical scavenging activities of orange baby carrot and carrot (Daucus carota Linn.) root crude extracts, Journal of Chemical and Pharmaceutical Research, 5, 4, (2013), 97-102
  25. Vanicha Vichai, Kanyawim Kirtikara, Sulforhodamine B colorimetric assay for cytotoxicity screening, Nature Protocols, 1, (2006), 1112-1116 https://doi.org/10.1038/nprot.2006.179
  26. Reda F. A. Abdelhameed, Enas E. Eltamany, Dina M. Hal, Amany K. Ibrahim, Asmaa M. AboulMagd, Tarfah Al-Warhi, Khayrya A. Youssif, Adel M. Abd El-kader, Hashim A. Hassanean, Shaimaa Fayez, New cytotoxic cerebrosides from the red sea cucumber Holothuria spinifera supported by in-silico studies, Marine Drugs, 18, 8, (2020), 405 https://doi.org/10.3390/md18080405
  27. Tutik Murniasih, Masteria Yunovilsa Putra, Ratih Pangestuti, Antioxidant capacities of Holothuria sea cucumbers, Annales Bogorienses, 2015
  28. Jean Mamelona, Emilien Pelletier, Karl Girard-Lalancette, Jean Legault, Salwa Karboune, Selim Kermasha, Quantification of phenolic contents and antioxidant capacity of Atlantic sea cucumber, Cucumaria frondosa, Food Chemistry, 104, 3, (2007), 1040-1047 https://doi.org/10.1016/j.foodchem.2007.01.016
  29. Zuzana Réblová, The effect of temperature on the antioxidant activity of tocopherols, European Journal of Lipid Science and Technology, 108, 10, (2006), 858-863 https://doi.org/10.1002/ejlt.200600091
  30. Mahmuda Khatun, Satomi Eguchi, Tomoko Yamaguchi, Hitoshi Takamura, Teruyoshi Matoba, Effect of thermal treatment on radical-scavenging activity of some spices, Food Science and Technology Research, 12, 3, (2006), 178-185 https://doi.org/10.3136/fstr.12.178
  31. Zhihong Cheng, Lan Su, Jeffrey Moore, Kequan Zhou, Marla Luther, Jun-Jie Yin, Liangli Yu, Effects of postharvest treatment and heat stress on availability of wheat antioxidants, Journal of Agricultural and Food Chemistry, 54, 15, (2006), 5623-5629 https://doi.org/10.1021/jf060719b
  32. Zuzana Réblová, Effect of temperature on the antioxidant activity of phenolic acids, Czech Journal of Food Sciences, 30, 2, (2012), 171-177 http://dx.doi.org/10.17221/57/2011-CJFS
  33. Emma M. Marinova, Nedyalka V. Yanishlieva, Antioxidant activity and mechanism of action of some phenolic acids at ambient and high temperatures, Food Chemistry, 81, 2, (2003), 189-197 https://doi.org/10.1016/S0308-8146(02)00411-9
  34. Shafira Ananda Djakaria, Irmanida Batubara, Rika Raffiudin, Antioxidant and antibacterial activity of selected indonesian honey against bacteria of acne, Jurnal Kimia Sains dan Aplikasi, 23, 8, (2020), 267-275 https://doi.org/10.14710/jksa.23.8.267-275
  35. Mohamad Rafi, Tanti Yulianti Raga Pertiwi, Syaefudin Syaefudin, Determination of Total Phenolic Content and Antioxidant Activity of Six Ornamental Plants, Jurnal Kimia Sains dan Aplikasi, 22, 3, (2019), 79-84 https://doi.org/10.14710/jksa.22.3.79-84
  36. Yolanda Avigail, Ervia Yudiati, Delianis Pringgenies, Aktivitas Antioksidan dan Kandungan Total Fenolik Pada Teripang di Perairan Karimunjawa, Jepara, Journal of Marine Research, 8, 4, (2019), 346-354 https://doi.org/10.14710/jmr.v8i4.24600
  37. Yahya Maghsoudlou, Mohsen Asghari Ghajari, Sedighe Tavasoli, Effects of heat treatment on the phenolic compounds and antioxidant capacity of quince fruit and its tisane’s sensory properties, Journal of Food Science and Technology, 56, 5, (2019), 2365-2372 https://doi.org/10.1007/s13197-019-03644-6
  38. Wenjuan Qu, Zhongli Pan, Haile Ma, Extraction modeling and activities of antioxidants from pomegranate marc, Journal of Food Engineering, 99, 1, (2010), 16-23 https://doi.org/10.1016/j.jfoodeng.2010.01.020
  39. S. Mashjoor, Morteza Yousefzadi, Cytotoxic effects of three Persian Gulf species of Holothurians, Iranian Journal of Veterinary Research, 20, 1, (2019), 19-26
  40. Sakineh Mashjoor, Morteza Yousefzadi, Fatemeh Pishevarzad, Assessment of anticancer potential of selected Holothuria species, Indian Journal of Traditional Knowledge, 18, 2, (2019), 272-280
  41. Teresa Liliana Wargasetia, Widodo, Mechanisms of cancer cell killing by sea cucumber-derived compounds, Investigational New Drugs, 35, (2017), 820-826 https://doi.org/10.1007/s10637-017-0505-5
  42. Yong-Xin Li, S. W. A. Himaya, Se-Kwon Kim, Triterpenoids of marine origin as anti-cancer agents, Molecules, 18, 7, (2013), 7886-7909 https://doi.org/10.3390/molecules18077886
  43. Charalampos G. Panagos, Derek S. Thomson, Claire Moss, Adam D. Hughes, Maeve S. Kelly, Yan Liu, Wengang Chai, Radhakrishnan Venkatasamy, Domenico Spina, Clive P. Page, Fucosylated chondroitin sulfates from the body wall of the sea cucumber Holothuria forskali: Conformation, selectin binding, and biological activity, Journal of Biological Chemistry, 289, 41, (2014), 28284-28298 https://doi.org/10.1074/jbc.M114.572297
  44. Teresa Liliana Wargasetia, Hana Ratnawati, Nashi Widodo, Anticancer potential of holothurin A, holothurin B, and holothurin B3 from the sea cucumber Holothuria scabra, AIP Conference Proceedings, 2020 https://doi.org/10.1063/5.0002552
  45. Oktay Tacar, Pornsak Sriamornsak, Crispin R. Dass, Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems, Journal of Pharmacy and Pharmacology, 65, 2, (2013), 157-170 https://doi.org/10.1111/j.2042-7158.2012.01567.x
  46. Muhammad Luqman Nordin, Arifah Abdul Kadir, Zainul Amiruddin Zakaria, Rasedee Abdullah, Muhammad Nazrul Hakim Abdullah, In vitro investigation of cytotoxic and antioxidative activities of Ardisia crispa against breast cancer cell lines, MCF-7 and MDA-MB-231, BMC Complementary and Alternative Medicine, 18, (2018), 1-10 https://doi.org/10.1186/s12906-018-2153-5

Last update:

No citation recorded.

Last update: 2024-12-27 06:13:52

No citation recorded.