skip to main content

Preparation of CoFe2O4/SiO2/Ag Magnetic Composite as Photocatalyst for Congo Red Dye and Antibacterial Potential

1Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Ogan Ilir, Indonesia

2Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Ogan Ilir, Indonesia

Received: 12 Jun 2022; Revised: 20 Jul 2022; Accepted: 27 Jul 2022; Published: 31 Aug 2022.
Open Access Copyright 2022 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract
This research reports the synthesized CoFe2O4/SiO2/Ag magnetic composite used as a photocatalyst to degrade Congo red dye and antibacterial agent against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The catalysts were characterized using XRD, SEM-EDS, VSM, UV-DRS, and pHpzc. The effects of photocatalyst dose (0.25, 0.5, 0.75, and 1.0 g/L), dye concentration (10, 20, 30, and 40 mg/L), and irradiation time (0–210 minutes) were all examined as photocatalytic degradation variables. The results showed that the CoFe2O4/SiO2/Ag composite was superparamagnetic with a saturation magnetization of 41.82 emu/g and had a band gap of 1.82 eV. The highest efficiency of decreasing the concentration of Congo red dye of 93.70% was obtained with an initial concentration of 10 mg/L, a catalyst dose of 0.5 g/L, and an irradiation time of 180 minutes. This study indicated that the composite had antibacterial properties against Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria with the same MIC value of 1.25%. These results indicated that the CoFe2O4/SiO2/Ag composite has significant potential for applications in wastewater treatment.
Fulltext View|Download
Keywords: CoFe2O4/SiO2/Ag; magnetic; photocatalyst; Congo red; antibacterial
Funding: Kementerian Pendidikan dan Kebudayaan

Article Metrics:

  1. Talib M. Albayati, Anaam A. Sabri, Dalia B. Abed, Functionalized SBA-15 by amine group for removal of Ni(II) heavy metal ion in the batch adsorption system, Desalination and Water Treatment, 174, (2020), 301-310 https://doi.org/10.5004/dwt.2020.24845
  2. Abul Kalam, Abdullah G. Al-Sehemi, Mohammed Assiri, Gaohui Du, Tokeer Ahmad, Irfan Ahmad, M. Pannipara, Modified solvothermal synthesis of cobalt ferrite (CoFe2O4) magnetic nanoparticles photocatalysts for degradation of methylene blue with H2O2/visible light, Results in Physics, 8, (2018), 1046-1053 https://doi.org/10.1016/j.rinp.2018.01.045
  3. N. Yahya, F. Aziz, N. A. Jamaludin, M. A. Mutalib, A. F. Ismail, W. N. W. Salleh, J. Jaafar, N. Yusof, N. A. Ludin, A review of integrated photocatalyst adsorbents for wastewater treatment, Journal of Environmental Chemical Engineering, 6, 6, (2018), 7411-7425 https://doi.org/10.1016/j.jece.2018.06.051
  4. Youzhou Zhou, Liuqin Ge, Neng Fan, Meisheng Xia, Adsorption of Congo red from aqueous solution onto shrimp shell powder, Adsorption Science & Technology, 36, 5-6, (2018), 1310-1330 https://doi.org/10.1177%2F0263617418768945
  5. J. Herney-Ramirez, Miguel A. Vicente, Luis M. Madeira, Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review, Applied Catalysis B: Environmental, 98, 1-2, (2010), 10-26 https://doi.org/10.1016/j.apcatb.2010.05.004
  6. Andreja Gajović, Adrián M. T. Silva, Ricardo A. Segundo, Saso Šturm, Boštjan Jančar, Miran Čeh, Tailoring the phase composition and morphology of Bi-doped goethite–hematite nanostructures and their catalytic activity in the degradation of an actual pesticide using a photo-Fenton-like process, Applied Catalysis B: Environmental, 103, 3-4, (2011), 351-361 https://doi.org/10.1016/j.apcatb.2011.01.042
  7. Luciano Carlos, Debora Fabbri, Alberto L. Capparelli, Alessandra Bianco Prevot, Edmondo Pramauro, Fernando S García Einschlag, Intermediate distributions and primary yields of phenolic products in nitrobenzene degradation by Fenton’s reagent, Chemosphere, 72, 6, (2008), 952-958 https://doi.org/10.1016/j.chemosphere.2008.03.042
  8. Maria Stylidi, Dimitris I. Kondarides, Xenophon E. Verykios, Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions, Applied Catalysis B: Environmental, 40, 4, (2003), 271-286 https://doi.org/10.1016/S0926-3373(02)00163-7
  9. Choon Woo Lim, In Su Lee, Magnetically recyclable nanocatalyst systems for the organic reactions, Nano Today, 5, 5, (2010), 412-434 https://doi.org/10.1016/j.nantod.2010.08.008
  10. Amit Balsing Rajput, Subhenjit Hazra, Narendra Nath Ghosh, Synthesis and characterisation of pure single-phase CoFe2O4 nanopowder via a simple aqueous solution-based EDTA-precursor route, Journal of Experimental Nanoscience, 8, 4, (2013), 629-639 https://doi.org/10.1080/17458080.2011.582170
  11. Zhigang Jia, Daping Ren, Yongcheng Liang, Rongsun Zhu, A new strategy for the preparation of porous zinc ferrite nanorods with subsequently light-driven photocatalytic activity, Materials Letters, 65, 19-20, (2011), 3116-3119 https://doi.org/10.1016/j.matlet.2011.06.101
  12. P. T. Phong, N. X. Phuc, Pham Hong Nam, N. V. Chien, D. D. Dung, P. H. Linh, Size-controlled heating ability of CoFe2O4 nanoparticles for hyperthermia applications, Physica B: Condensed Matter, 531, (2018), 30-34 https://doi.org/10.1016/j.physb.2017.12.010
  13. Huanling Xie, Wenguo Xu, Enhanced activation of persulfate by meso-CoFe2O4/SiO2 with ultrasonic treatment for degradation of chlorpyrifos, ACS Omega, 4, 17, (2019), 17177-17185 https://doi.org/10.1021/acsomega.9b01626
  14. V. Mahdikhah, S. Saadatkia, S. Sheibani, A. Ataie, Outstanding photocatalytic activity of CoFe2O4/rGO nanocomposite in degradation of organic dyes, Optical Materials, 108, 110193, (2020), 1-13 https://doi.org/10.1016/j.optmat.2020.110193
  15. Thomas Dippong, Erika Andrea Levei, Lucian Diamandescu, Ion Bibicu, Cristian Leostean, Gheorghe Borodi, Lucian Barbu Tudoran, Structural and magnetic properties of CoxFe3−xO4 versus Co/Fe molar ratio, Journal of Magnetism and Magnetic Materials, 394, (2015), 111-116 https://doi.org/10.1016/j.jmmm.2015.06.055
  16. Subramanian Natarajan, Hari C. Bajaj, Rajesh J. Tayade, Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process, Journal of Environmental Sciences, 65, (2018), 201-222 https://doi.org/10.1016/j.jes.2017.03.011
  17. S. Gowreesan, A. Ruban Kumar, Effects of Mg2+ ion substitution on the structural and electric studies of spinel structure of Co1−xMgxFe2O4, Journal of Materials Science: Materials in Electronics, 28, 6, (2017), 4553-4564 https://doi.org/10.1007/s10854-016-6091-z
  18. T. Ramesh, S. Bharadwaj, S. Ramana Murthy, CoFe2O4-SiO2 Composites: preparation and magnetodielectric properties, Journal of Materials, 2016, 7518468, (2016), 1-7 https://doi.org/10.1155/2016/7518468
  19. Noppakun Sanpo, Christopher C. Berndt, Cuie Wen, James Wang, Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications, Acta Biomaterialia, 9, 3, (2013), 5830-5837 https://doi.org/10.1016/j.actbio.2012.10.037
  20. Davood Gheidari, Morteza Mehrdad, Saloomeh Maleki, Samanesadat Hosseini, Synthesis and potent antimicrobial activity of CoFe2O4 nanoparticles under visible light, Heliyon, 6, 10, (2020), 1-9 https://doi.org/10.1016/j.heliyon.2020.e05058
  21. Meagan S. Mauter, Yue Wang, Kaetochi C. Okemgbo, Chinedum O. Osuji, Emmanuel P. Giannelis, Menachem Elimelech, Antifouling ultrafiltration membranes via post-fabrication grafting of biocidal nanomaterials, ACS Applied Materials & Interfaces, 3, 8, (2011), 2861-2868 https://doi.org/10.1021/am200522v
  22. Monty Liong, Bryan France, Kenneth A. Bradley, Jeffrey I. Zink, Antimicrobial activity of silver nanocrystals encapsulated in mesoporous silica nanoparticles, Advanced materials, 21, 17, (2009), 1684-1689 https://doi.org/10.1002/adma.200802646
  23. Ainun Nikmah, Ahmad Taufiq, Arif Hidayat, Sunaryono, Hendra Susanto, Excellent Antimicrobial Activity of Fe3O4/SiO2/Ag Nanocomposites, NANO: Brief Reports and Reviews, 16, 05, (2021), 1-13 https://doi.org/10.1142/S1793292021500491
  24. Monika Jain, Mithilesh Yadav, Tomas Kohout, Manu Lahtinen, Vinod Kumar Garg, Mika Sillanpää, Development of iron oxide/activated carbon nanoparticle composite for the removal of Cr(VI), Cu(II) and Cd(II) ions from aqueous solution, Water Resources and Industry, 20, (2018), 54-74 https://doi.org/10.1016/j.wri.2018.10.001
  25. Avvaru Praveen Kumar, Dinesh Bilehal, Tegene Desalegn, Shalendra Kumar, Faheem Ahmed, H. C. Murthy, Deepak Kumar, Gaurav Gupta, Dinesh Kumar Chellappan, Sachin Kumar Singh, Studies on synthesis and characterization of Fe3O4@SiO2@Ru hybrid magnetic composites for reusable photocatalytic application, Adsorption Science & Technology, 2022, 3970287, (2022), 1-18 https://doi.org/10.1155/2022/3970287
  26. P. C. Rajath Varma, Rudra Sekhar Manna, D. Banerjee, Manoj Raama Varma, K. G. Suresh, A. K. Nigam, Magnetic properties of CoFe2O4 synthesized by solid state, citrate precursor and polymerized complex methods: A comparative study, Journal of Alloys and Compounds, 453, 1-2, (2008), 298-303 https://doi.org/10.1016/j.jallcom.2006.11.058
  27. Sahar Zinatloo-Ajabshir, Masoud Salavati-Niasari, Preparation of magnetically retrievable CoFe2O4@SiO2@Dy2Ce2O7 nanocomposites as novel photocatalyst for highly efficient degradation of organic contaminants, Composites Part B: Engineering, 174, 106930, (2019), 1-9 https://doi.org/10.1016/j.compositesb.2019.106930
  28. Zbigniew S. Piskuła, Przemysław Skokowski, Tomasz Toliński, Michał Zieliński, Piotr Kirszensztejn, Waldemar Nowicki, Structure, magnetic and catalytic properties of SiO2-MFe2O4 (M= Mn, Co, Ni, Cu) nanocomposites and their syntheses by a modified sol–gel method, Materials Chemistry and Physics, 235, 121731, (2019), 1-7 https://doi.org/10.1016/j.matchemphys.2019.121731
  29. Isara Kotutha, Thanawut Duangchuen, Ekaphan Swatsitang, Worawat Meewasana, Jessada Khajonrit, Santi Maensiri, Electrochemical properties of rGO/CoFe2O4 nanocomposites for energy storage application, Ionics, 25, 11, (2019), 5401-5409 https://doi.org/10.1007/s11581-019-03114-1
  30. Sonu, Vishal Dutta, Sheetal Sharma, Pankaj Raizada, Ahmad Hosseini-Bandegharaei, Vinod Kumar Gupta, Pardeep Singh, Review on augmentation in photocatalytic activity of CoFe2O4 via heterojunction formation for photocatalysis of organic pollutants in water, Journal of Saudi Chemical Society, 23, 8, (2019), 1119-1136 https://doi.org/10.1016/j.jscs.2019.07.003
  31. Lu Gan, Lijie Xu, Kun Qian, Preparation of core-shell structured CoFe2O4 incorporated Ag3PO4 nanocomposites for photocatalytic degradation of organic dyes, Materials & Design, 109, (2016), 354-360 https://doi.org/10.1016/j.matdes.2016.07.043
  32. Anila Ajmal, Imran Majeed, Riffat Naseem Malik, Hicham Idriss, Muhammad Amtiaz Nadeem, Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview, RSC Advances, 4, 70, (2014), 37003-37026 https://doi.org/10.1039/C4RA06658H
  33. Ridha Lafi, Imed Montasser, Amor Hafiane, Adsorption of congo red dye from aqueous solutions by prepared activated carbon with oxygen-containing functional groups and its regeneration, Adsorption Science & Technology, 37, 1-2, (2019), 160-181 https://doi.org/10.1177%2F0263617418819227
  34. Saraf Khan, Adnan Khan, Nisar Ali, Shehzad Ahmad, Waqar Ahmad, Sumeet Malik, Nauman Ali, Hammad Khan, Sumaira Shah, Muhammad Bilal, Degradation of Congo red dye using ternary metal selenide-chitosan microspheres as robust and reusable catalysts, Environmental Technology & Innovation, 22, 101402, (2021), 1-14 https://doi.org/10.1016/j.eti.2021.101402
  35. Subhash Dharmraj Khairnar, Manohar Rajendra Patil, Vinod Shankar Shrivastava, Hydrothermally synthesized nanocrystalline Nb2O5 and its visible-light photocatalytic activity for the degradation of congo red and methylene blue, Iranian Journal of Catalysis, 8, 2, (2018), 143-150
  36. Poedji Loekitowati Hariani, Muhammad Said, Nabila Aprianti, Yohanna Asina Lasma Rohana Naibaho, High Efficient Photocatalytic Degradation of Methyl Orange Dye in an Aqueous Solution by CoFe2O4-SiO2-TiO2 Magnetic Catalyst, Journal of Ecological Engineering, 23, 1, (2021), 118-128 https://doi.org/10.12911/22998993/143908
  37. Yue Chi, Qing Yuan, Yanjuan Li, Liang Zhao, Nan Li, Xiaotian Li, Wenfu Yan, Magnetically separable Fe3O4@ SiO2@TiO2-Ag microspheres with well-designed nanostructure and enhanced photocatalytic activity, Journal of Hazardous Materials, 262, (2013), 404-411 https://doi.org/10.1016/j.jhazmat.2013.08.077
  38. Muhammad Shahid, Liu Jingling, Zahid Ali, Imran Shakir, Muhammad Farooq Warsi, Riffat Parveen, Muhammad Nadeem, Photocatalytic degradation of methylene blue on magnetically separable MgFe2O4 under visible light irradiation, Materials Chemistry and Physics, 139, 2-3, (2013), 566-571 https://doi.org/10.1016/j.matchemphys.2013.01.058
  39. B. Mercyrani, R. Hernandez-Maya, M. Solís-López, Christeena Th-Th, Photocatalytic degradation of Orange G using TiO2/Fe3O4 nanocomposites, Journal of Materials Science: Materials in Electronics, 29, 18, (2018), 15436-15444 https://doi.org/10.1007/s10854-018-9069-1
  40. T. Linda, S. Muthupoongodi, X. Sahaya Shajan, S. Balakumar, Photocatalytic degradation of congo red and crystal violet dyes on cellulose/PVC/ZnO composites under UV light irradiation, Materials Today: Proceedings, 2016 https://doi.org/10.1016/j.matpr.2016.04.106
  41. Ujwala O. Bhagwat, Jerry J. Wu, Abdullah M. Asiri, Sambandam Anandan, Sonochemical Synthesis of Mg-TiO2 nanoparticles for persistent Congo red dye degradation, Journal of Photochemistry and Photobiology A: Chemistry, 346, (2017), 559-569 https://doi.org/10.1016/j.jphotochem.2017.06.043
  42. Ujwala O. Bhagwat, Jerry J. Wu, Abdullah M. Asiri, Sambandam Anandan, Photocatalytic degradation of congo red using PbTiO3 nanorods synthesized via a sonochemical approach, ChemistrySelect, 3, 42, (2018), 11851-11858 https://doi.org/10.1002/slct.201802303
  43. Nisar Ali, Amir Said, Farman Ali, Fazal Raziq, Zarshad Ali, Muhammad Bilal, Laurence Reinert, Tasleem Begum, Hafiz Iqbal, Photocatalytic degradation of congo red dye from aqueous environment using cobalt ferrite nanostructures: development, characterization, and photocatalytic performance, Water, Air, & Soil Pollution, 231, 50, (2020), 1-16
  44. https://doi.org/10.1007/s11270-020-4410-8
  45. Nguyen Thi To Loan, Nguyen Thi Hien Lan, Nguyen Thi Thuy Hang, Nguyen Quang Hai, Duong Thi Tu Anh, Vu Thi Hau, Lam Van Tan, Thuan Van Tran, CoFe2O4 nanomaterials: Effect of annealing temperature on characterization, magnetic, photocatalytic, and photo-Fenton properties, Processes, 7, 12, (2019), 1-14 https://doi.org/10.3390/pr7120885
  46. Poedji Loekitowati Hariani, Fahma Riyanti, Rizki Putri, Salni Salni, Synthesis and characterization of Fe3O4 nanoparticles modified with polyethylene glycol as antibacterial material, The Journal of Pure and Applied Chemistry Research, 7, 2, (2018), 122-129 http://dx.doi.org/10.21776/ub.jpacr.2018.007.02.393
  47. Azhwar Raghunath, Ekambaram Perumal, Metal oxide nanoparticles as antimicrobial agents: a promise for the future, International Journal of Antimicrobial Agents, 49, 2, (2017), 137-152 https://doi.org/10.1016/j.ijantimicag.2016.11.011
  48. Matthew L. Workentine, Joe J. Harrison, Pernilla U. Stenroos, Howard Ceri, Raymond J. Turner, Pseudomonas fluorescens' view of the periodic table, Environmental Microbiology, 10, 1, (2008), 238-250 https://doi.org/10.1111/j.1462-2920.2007.01448.x

Last update:

  1. Silver decorated on cobalt ferrite nanoparticles as a reusable multifunctional catalyst for water treatment applications in non-radiation conditions

    Le Thi Ngoc Hoa, Vu Nang An, Vo Huynh Tra My, Pham Thi Thu Giang, Le Khac Top, Ha Thuc Chi Nhan, Phan Bach Thang, Tran Thi Thanh Van, Le Van Hieu. RSC Advances, 13 (35), 2023. doi: 10.1039/D3RA02950F

Last update: 2024-04-25 05:53:57

No citation recorded.