skip to main content

Fabrication of Cellulose Nanocrystal (CNCs) Based Biosorbent From Oil Palm Trunks Through Acid Hydrolysis With Sonication Assisted and Adsorption Kinetic Study

1Chemical Engineering Department, Faculty of Engineering, Universitas Surabaya, Surabaya 60293, Indonesia

2Chemical Engineering Department, Faculty of Engineering, Universitas Muhammadiyah Gresik, Gresik 61121, Indonesia

Received: 11 Aug 2022; Revised: 2 Nov 2022; Accepted: 16 Nov 2022; Available online: 23 Dec 2022; Published: 23 Dec 2022.
Open Access Copyright 2022 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract
Developing cellulose nanocrystal (CNCs) preparation techniques is a challenge confronted by many researchers. The advantages of property remain the reason for research to be developed. To deal with this issue, it is essential to conduct research related to process optimization, particularly in the hydrolysis process, which is the primary step in forming CNCs. In this study, the effect of sonication-assisted hydrolysis time was investigated. XRD characterization showed that the CNCs formed where the first group with specific peaks indicated. The crystallinity of CNCs decreased with increasing sonication duration, indicating that sonication-assisted hydrolysis was nonselective. The crystallinity of CNCs obtained for 15, 30, and 45 min was 61.6, 55.0, and 48.4 %, respectively. For sonication duration variations of 15, 30, and 45 min, the hydration diameter of CNCs was nearly identical at 42.35 ± 27.10, 42.99 ± 29.46, and 42.63 ± 29.49 nm, respectively. Similarly, the removal of methylene blue can be achieved using CNCs bio-adsorbent. The results of percent removal of methylene blue under sonication treatment of 15, 30, and 45 min of sonication were 73.34; 73.62; 72.86 %, respectively. The adsorption rate of CNCs follows the pseudo-second-order kinetic model, with the adsorption values under sonication treatment of 15, 30, and 45 min were 0.075 ± 0.008; 0.166 ± 0.013; 0.078 ± 0.005 g mg-1 min-1, respectively.
Fulltext View|Download
Keywords: Cellulose nanocrystals; hydrolysis; sonication; biosorbent; oil palm trunk
Funding: This research was funded by Universitas Gadjah Mada through a research grant of "Rekognisi Tugas Akhir 2020" (Contract No. 2488/UN1.P.III/DIT-LIT/PT/2020).

Article Metrics:

  1. Philippe Tingaut, Tanja Zimmermann, Gilles Sèbe, Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials, Journal of Materials Chemistry, 22, 38, (2012), 20105-20111 https://doi.org/10.1039/C2JM32956E
  2. Farshad Hemmati, Seid Mahdi Jafari, Ramezan Ali Taheri, Optimization of homogenization-sonication technique for the production of cellulose nanocrystals from cotton linter, International Journal of Biological Macromolecules, 137, (2019), 374-381 https://doi.org/10.1016/j.ijbiomac.2019.06.241
  3. Nathalie Lavoine, Isabelle Desloges, Alain Dufresne, Julien Bras, Microfibrillated cellulose–Its barrier properties and applications in cellulosic materials: A review, Carbohydrate Polymers, 90, 2, (2012), 735-764 https://doi.org/10.1016/j.carbpol.2012.05.026
  4. Oleksandr Nechyporchuk, Mohamed Naceur Belgacem, Julien Bras, Production of cellulose nanofibrils: A review of recent advances, Industrial Crops and Products, 93, (2016), 2-25 https://doi.org/10.1016/j.indcrop.2016.02.016
  5. Ashvinder Kumar Rana, Elisabete Frollini, Vijay Kumar Thakur, Cellulose nanocrystals: Pretreatments, preparation strategies, and surface functionalization, International Journal of Biological Macromolecules, 182, (2021), 1554-1581 https://doi.org/10.1016/j.ijbiomac.2021.05.119
  6. Dileswar Pradhan, Amit K. Jaiswal, Swarna Jaiswal, Emerging technologies for the production of nanocellulose from lignocellulosic biomass, Carbohydrate Polymers, 285, 119258, (2022), https://doi.org/10.1016/j.carbpol.2022.119258
  7. Djalal Trache, Vijay Kumar Thakur, Rabah Boukherroub, Cellulose nanocrystals/graphene hybrids—a promising new class of materials for advanced applications, Nanomaterials, 10, 8, (2020), 1523 https://doi.org/10.3390/nano10081523
  8. C. N. C. Hitam, A. A. Jalil, Recent advances on nanocellulose biomaterials for environmental health photoremediation: An overview, Environmental Research, 204, 111964, (2022), https://doi.org/10.1016/j.envres.2021.111964
  9. Patchiya Phanthong, Guoqing Guan, Yufei Ma, Xiaogang Hao, Abuliti Abudula, Effect of ball milling on the production of nanocellulose using mild acid hydrolysis method, Journal of the Taiwan Institute of Chemical Engineers, 60, (2016), 617-622 https://doi.org/10.1016/j.jtice.2015.11.001
  10. Djalal Trache, André Donnot, Kamel Khimeche, Riad Benelmir, Nicolas Brosse, Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres, Carbohydrate Polymers, 104, (2014), 223-230 https://doi.org/10.1016/j.carbpol.2014.01.058
  11. Chinmay Zinge, Balasubramanian Kandasubramanian, Nanocellulose based biodegradable polymers, European Polymer Journal, 133, 109758, (2020), https://doi.org/10.1016/j.eurpolymj.2020.109758
  12. Ahmed Fouzi Tarchoun, Djalal Trache, Thomas M. Klapötke, Salim Chelouche, Mehdi Derradji, Wissam Bessa, Abderrahmane Mezroua, A promising energetic polymer from Posidonia oceanica brown algae: synthesis, characterization, and kinetic modeling, Macromolecular Chemistry and Physics, 220, 22, (2019), 1900358 https://doi.org/10.1002/macp.201900358
  13. Hongjie Dai, Jihong Wu, Huan Zhang, Yuan Chen, Liang Ma, Huihua Huang, Yue Huang, Yuhao Zhang, Recent advances on cellulose nanocrystals for Pickering emulsions: Development and challenge, Trends in Food Science & Technology, 102, (2020), 16-29 https://doi.org/10.1016/j.tifs.2020.05.016
  14. Hongxiang Xie, Haishun Du, Xianghao Yang, Chuanling Si, Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials, International Journal of Polymer Science, 2018, 7923068, (2018), https://doi.org/10.1155/2018/7923068
  15. Mohammad Tajul Islam, Mohammad Mahbubul Alam, Alessia Patrucco, Alessio Montarsolo, Marina Zoccola, Preparation of nanocellulose: A review, AATCC Journal of Research, 1, 5, (2014), 17-23 https://doi.org/10.14504/ajr.1.5.3
  16. Kok Bing Tan, Alavy Kifait Reza, Ahmad Zuhairi Abdullah, Bahman Amini Horri, Babak Salamatinia, Development of self-assembled nanocrystalline cellulose as a promising practical adsorbent for methylene blue removal, Carbohydrate Polymers, 199, (2018), 92-101 https://doi.org/10.1016/j.carbpol.2018.07.006
  17. A. Villabona-Ortíz, C. N. Tejada-Tovar, R. Ortega-Toro, Modelling of the adsorption kinetics of Chromium (VI) using waste biomaterials, Revista Mexicana de Ingeniería Química, 19, 1, (2020), 401-408 https://doi.org/10.24275/rmiq/IA650
  18. Jaime López-Luna, Loida E. Ramírez-Montes, Sergio Martinez-Vargas, Arturo I. Martínez, Oscar F. Mijangos-Ricardez, María del Carmen A. González-Chávez, Rogelio Carrillo-González, Fernando A. Solís-Domínguez, María del Carmen Cuevas-Díaz, Virgilio Vázquez-Hipólito, Linear and nonlinear kinetic and isotherm adsorption models for arsenic removal by manganese ferrite nanoparticles, SN Applied Sciences, 1, 8, (2019), 1-19 https://doi.org/10.1007/s42452-019-0977-3
  19. Bianca Silva Marques, Tuanny Santos Frantz, Tito Roberto Sant’Anna Cadaval Junior, Luiz Antonio de Almeida Pinto, Guilherme Luiz Dotto, Adsorption of a textile dye onto piaçava fibers: kinetic, equilibrium, thermodynamics, and application in simulated effluents, Environmental Science and Pollution Research, 26, 28, (2019), 28584-28592 https://doi.org/10.1007/s11356-018-3587-5
  20. Y. H. Magdy, Hossam Altaher, Kinetic analysis of the adsorption of dyes from high strength wastewater on cement kiln dust, Journal of Environmental Chemical Engineering, 6, 1, (2018), 834-841 https://doi.org/10.1016/j.jece.2018.01.009
  21. James Hockaday, Adam Harvey, Sharon Velasquez-Orta, A comparative analysis of the adsorption kinetics of Cu2+ and Cd2+ by the microalgae Chlorella vulgaris and Scenedesmus obliquus, Algal Research, 64, (2022), 102710 https://doi.org/10.1016/j.algal.2022.102710
  22. Himanshu Gupta, Santosh Singh, Kinetics and thermodynamics of phenanthrene adsorption from water on orange rind activated carbon, Environmental Technology & Innovation, 10, (2018), 208-214 https://doi.org/10.1016/j.eti.2018.03.001
  23. Xayanto Inthapanya, Shaohua Wu, Zhenfeng Han, Guangming Zeng, Mengjie Wu, Chunping Yang, Adsorptive removal of anionic dye using calcined oyster shells: isotherms, kinetics, and thermodynamics, Environmental Science and Pollution Research, 26, 6, (2019), 5944-5954 https://doi.org/10.1007/s11356-018-3980-0
  24. M. Manjuladevi, R. Anitha, S. Manonmani, Kinetic study on adsorption of Cr(VI), Ni(II), Cd(II) and Pb(II) ions from aqueous solutions using activated carbon prepared from Cucumis melo peel, Applied Water Science, 8, 1, (2018), 1-8 https://doi.org/10.1007/s13201-018-0674-1
  25. Mega Mustikaningrum, Rochim Bakti Cahyono, Ahmad T. Yuliansyah, Effect of NaOH Concentration in Alkaline Treatment Process for Producing Nano Crystal Cellulose-Based Biosorbent for Methylene Blue, IOP Conference Series: Materials Science and Engineering, 2021 https://doi.org/10.1088/1757-899X/1053/1/012005
  26. Wenshuai Chen, Haipeng Yu, Yixing Liu, Peng Chen, Mingxin Zhang, Yunfei Hai, Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments, Carbohydrate Polymers, 83, 4, (2011), 1804-1811 https://doi.org/10.1016/j.carbpol.2010.10.040
  27. Juan Guo, Xuxia Guo, Siqun Wang, Yafang Yin, Effects of ultrasonic treatment during acid hydrolysis on the yield, particle size and structure of cellulose nanocrystals, Carbohydrate Polymers, 135, (2016), 248-255 https://doi.org/10.1016/j.carbpol.2015.08.068
  28. Peng Tao, Yuehua Zhang, Zhengmei Wu, Xiaoping Liao, Shuangxi Nie, Enzymatic pretreatment for cellulose nanofibrils isolation from bagasse pulp: transition of cellulose crystal structure, Carbohydrate Polymers, 214, (2019), 1-7 https://doi.org/10.1016/j.carbpol.2019.03.012
  29. Fahmi Fathurrahman Miranda, Aristawati Sekar Putri, Mega Mustikaningrum, Ahmad Tawfiequrrahman Yuliansyah, Preparation and characterization of nano crystal cellulose from oil palm trunk for adsorption of methylene blue, AIP Conference Proceedings, 2021 https://doi.org/10.1063/5.0067128
  30. Wei Li, Jinquan Yue, Shouxin Liu, Preparation of nanocrystalline cellulose via ultrasound and its reinforcement capability for poly (vinyl alcohol) composites, Ultrasonics Sonochemistry, 19, 3, (2012), 479-485 https://doi.org/10.1016/j.ultsonch.2011.11.007
  31. Jamileh Shojaeiarani, Dilpreet Bajwa, Greg Holt, Sonication amplitude and processing time influence the cellulose nanocrystals morphology and dispersion, Nanocomposites, 6, 1, (2020), 41-46 https://doi.org/10.1080/20550324.2019.1710974
  32. Luana Müller de Souza, Renato Queiroz Assis, Cristian Mauricio Barreto Pinilla, Rafaela Stange, Helena Cristina Vieira, Adriano Brandelli, Tania Maria Haas Costa, Alessandro de Oliveira Rios, Polliana D’Angelo Rios, Eucalyptus spp. cellulose nanocrystals obtained by acid hydrolysis and ultrasound processing for structural strengthening in paper packaging, Wood Science and Technology, 55, 3, (2021), 639-657 https://doi.org/10.1007/s00226-021-01278-6
  33. Longwei Jiang, Jingde Yang, Qian Wang, Lili Ren, Jiang Zhou, Fabrication and characterisation of cellulose nanocrystals from microcrystalline cellulose by esterification and ultrasound treatment, Micro & Nano Letters, 13, 11, (2018), 1574-1579 https://doi.org/10.1049/mnl.2018.5043
  34. Yan Lu, Sizhong Li, Preparation of hierarchically interconnected porous banana peel activated carbon for methylene blue adsorption, Journal of Wuhan University of Technology-Mater. Sci. Ed., 34, 2, (2019), 472-480 https://doi.org/10.1007/s11595-019-2076-0
  35. M. F. Abdullah, Ahmad Azfaralariff, Azwan Mat Lazim, Methylene blue removal by using pectin-based hydrogels extracted from dragon fruit peel waste using gamma and microwave radiation polymerization techniques, Journal of Biomaterials Science, Polymer Edition, 29, 14, (2018), 1745-1763 https://doi.org/10.1080/09205063.2018.1489023
  36. Ali H. Jawad, Afaf Murtadha Kadhum, Y. S. Ngoh, Applicability of dragon fruit (Hylocereus polyrhizus) peels as low-cost biosorbent for adsorption of methylene blue from aqueous solution: kinetics, equilibrium and thermodynamics studies, Desalination and Water Treatment, 109, (2018), 231-240 http://dx.doi.org/10.5004/dwt.2018.21976
  37. C. A. Soto-Robles, O. J. Nava, A. R. Vilchis-Nestor, A. Castro-Beltrán, C. M. Gómez-Gutiérrez, E. Lugo-Medina, A. Olivas, P. A. Luque, Biosynthesized zinc oxide using Lycopersicon esculentum peel extract for methylene blue degradation, Journal of Materials Science: Materials in Electronics, 29, 5, (2018), 3722-3729 https://doi.org/10.1007/s10854-017-8305-4
  38. Sadia Shakoor, Abu Nasar, Adsorptive treatment of hazardous methylene blue dye from artificially contaminated water using cucumis sativus peel waste as a low-cost adsorbent, Groundwater for Sustainable Development, 5, (2017), 152-159 https://doi.org/10.1016/j.gsd.2017.06.005
  39. Alireza Allafchian, Zahra Sadat Mousavi, Seyed Sajjad Hosseini, Application of cress seed musilage magnetic nanocomposites for removal of methylene blue dye from water, International Journal of Biological Macromolecules, 136, (2019), 199-208 https://doi.org/10.1016/j.ijbiomac.2019.06.083
  40. Rania Dallel, Aida Kesraoui, Mongi Seffen, Biosorption of cationic dye onto “Phragmites australis” fibers: Characterization and mechanism, Journal of Environmental Chemical Engineering, 6, 6, (2018), 7247-7256 https://doi.org/10.1016/j.jece.2018.10.024
  41. Nadiah Mokhtar, Edriyana A. Aziz, Azmi Aris, W. F. W. Ishak, Noor Saadiah Mohd Ali, Biosorption of azo-dye using marine macro-alga of Euchema Spinosum, Journal of Environmental Chemical Engineering, 5, 6, (2017), 5721-5731 https://doi.org/10.1016/j.jece.2017.10.043
  42. Yang Yang, Weiye Yu, Shujun He, Shuaixian Yu, Ying Chen, Luhua Lu, Zhu Shu, Hongda Cui, Yong Zhang, Hongyun Jin, Rapid adsorption of cationic dye-methylene blue on the modified montmorillonite/graphene oxide composites, Applied Clay Science, 168, (2019), 304-311 https://doi.org/10.1016/j.clay.2018.11.013
  43. Tiantian Li, Zhu Shu, Jun Zhou, Yun Chen, Dongxue Yu, Ximing Yuan, Yanxin Wang, Template-free synthesis of kaolin-based mesoporous silica with improved specific surface area by a novel approach, Applied Clay Science, 107, (2015), 182-187 https://doi.org/10.1016/j.clay.2015.01.022
  44. W. A. Khanday, M. Asif, B. H. Hameed, Cross-linked beads of activated oil palm ash zeolite/chitosan composite as a bio-adsorbent for the removal of methylene blue and acid blue 29 dyes, International Journal of Biological Macromolecules, 95, (2017), 895-902 https://doi.org/10.1016/j.ijbiomac.2016.10.075
  45. Marina Massaro, Carmelo G. Colletti, Giuseppe Lazzara, Susanna Guernelli, Renato Noto, Serena Riela, Synthesis and characterization of halloysite–cyclodextrin nanosponges for enhanced dyes adsorption, ACS Sustainable Chemistry & Engineering, 5, 4, (2017), 3346-3352 https://doi.org/10.1021/acssuschemeng.6b03191

Last update:

No citation recorded.

Last update: 2024-03-27 12:46:58

No citation recorded.