1Department of Biochemistry, Faculty of Mathematics and Natural Sciences, IPB University, Kampus IPB Darmaga, Bogor, Jawa Barat, Indonesia
2Department of Biochemistry, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, 16680, Indonesia
3Department of Applied Biosciences, Faculty of Agriculture, Ehime University, Ehime, Japan
BibTex Citation Data :
@article{JKSA49495, author = {Syamsul Falah and Laksmi Ambarsari and Dimas Andrianto and Rini Kurniasih and Sanro Tachibana}, title = {The potential of Myricitrin, a Flavonoid Compound in Eugenia polyantha from Indonesia, as an Antiviral Drug for SARS-Cov-2 through the Molecular Docking Analysis}, journal = {Jurnal Kimia Sains dan Aplikasi}, volume = {26}, number = {5}, year = {2023}, keywords = {Eugenia polyantha; molecular docking; myricitrin; SARS-CoV-2}, abstract = { A Flavonoid glycoside compound, isolated and identified from E. polyantha as myricitrin, was analyzed as a ligand for its molecular binding activity against SARS-CoV-2 protein (receptor binding domain on Spike/RBD, main protease/nsp5, EndoRNAse, RNA-dependent-RNA-polymerase/RdRp), and its receptor, ACE2, and computationally assessed via molecular docking method. This study aims to determine the potential of myricitrin in E. polyantha from Indonesia as an antiviral drug for SARS-CoV-2 through molecular docking and molecular dynamic simulation analysis. The results showed that the myricitrin had the strongest binding affinity energy towards the three important SARS-CoV-2 proteins, namely endoRNAse, main protease (3CLpro), and RdRp with ∆G values of −9.60 kcal/mol, −8.40 kcal/mol, and −8.30 kcal/mol, respectively. These values are stronger than the comparator ligands of favipiravir (−5.60 kcal/mol), atazanavir (−7.20 kcal/mol), and remdesivir (−7.70 kcal/mol). This indicated that the compound has the potential as an inhibitor against 3CLpro, endoRNAse, and RdRp of SARS-CoV-2 proteins. This result was supported by the prediction made according to the Molprobity and PASS Online web servers, which showed that myricitrin has high bioactivity potential as an enzyme inhibitor (with a score of 0.38) and antiviral (with a score of 0.704). }, issn = {2597-9914}, pages = {166--177} doi = {10.14710/jksa.26.5.166-177}, url = {https://ejournal.undip.ac.id/index.php/ksa/article/view/49495} }
Refworks Citation Data :
A Flavonoid glycoside compound, isolated and identified from E. polyantha as myricitrin, was analyzed as a ligand for its molecular binding activity against SARS-CoV-2 protein (receptor binding domain on Spike/RBD, main protease/nsp5, EndoRNAse, RNA-dependent-RNA-polymerase/RdRp), and its receptor, ACE2, and computationally assessed via molecular docking method. This study aims to determine the potential of myricitrin in E. polyantha from Indonesia as an antiviral drug for SARS-CoV-2 through molecular docking and molecular dynamic simulation analysis. The results showed that the myricitrin had the strongest binding affinity energy towards the three important SARS-CoV-2 proteins, namely endoRNAse, main protease (3CLpro), and RdRp with ∆G values of −9.60 kcal/mol, −8.40 kcal/mol, and −8.30 kcal/mol, respectively. These values are stronger than the comparator ligands of favipiravir (−5.60 kcal/mol), atazanavir (−7.20 kcal/mol), and remdesivir (−7.70 kcal/mol). This indicated that the compound has the potential as an inhibitor against 3CLpro, endoRNAse, and RdRp of SARS-CoV-2 proteins. This result was supported by the prediction made according to the Molprobity and PASS Online web servers, which showed that myricitrin has high bioactivity potential as an enzyme inhibitor (with a score of 0.38) and antiviral (with a score of 0.704).
Article Metrics:
Last update:
Last update: 2025-01-01 14:20:55
As an article writer, the author has the right to use their articles for various purposes, including use by institutions that employ authors or institutions that provide funding for research. Author rights are granted without special permission.
Author who publishes a paper at JKSA has the broad right to use their work for teaching and scientific purposes without the need to ask permission, including: used for (i) teaching in the author's class or institution, (ii) presentation at meetings or conferences and distributing copies to participants ; (iii) training conducted by the author or author's institution; (iv) distribution to colleagues for research use; (v) use in the compilation of subsequent authors' works; (vi) inclusion in a thesis or dissertation; (vi) reuse of part of the article in another work (with citation); (vii) preparation of derivative works (with citation); (viii) voluntary posting on open websites operated by authors or author institutions for scientific purposes (follow the CC BY-SA License).
Authors and readers can copy and redistribute material in any media or format, and mix, modify, and build material for any purpose but they must provide appropriate credit (provide article citation or content), providing links to the license, and indicate if there are changes.
The authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to Jurnal Kimia Sains dan Aplikasi (JKSA). Copyright encompasses rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms and any other similar reproductions, as well as translations.
Reproduce any part of this journal, its storage in the database or its transmission by all forms or media is permitted does not need for written permission from JKSA. However, it should be cited as an honor in academic manners
JKSA and the Chemistry Department of Diponegoro University and the Editor make every effort to ensure that there are no data, opinions, or false or misleading statements published in JKSA. However, the content of the article is the sole and exclusive responsibility of each author.
The Copyright Transfer Form can be downloaded here: [Copyright Transfer Form - Indonesian] [Copyright Transfer Form - English]. The copyright form should be signed originally and send to the Editor in the form of printed letters, scanned documents sent via email or fax.
Adi Darmawan, Ph.D (Editor in Chief)
Editor in chief of Jurnal Kimia Sains dan Aplikasi (JKSA)
Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University
Visitor: View My Stats
Jurnal Kimia Sains dan Aplikasi is indexed in:
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.