skip to main content

Green Production of Chitin from Black Soldier Fly Pupae Using a Natural Deep Eutectic Solvents

Study Program of Chemistry, Faculty of Science and Computer, Universitas Pertamina, Jakarta 12220, Indonesia

Received: 11 Sep 2023; Revised: 24 Nov 2023; Accepted: 21 Dec 2023; Published: 25 Dec 2023.
Open Access Copyright 2023 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Natural deep eutectic solvents (NADES) are eco-sustainable, non-toxic, non-volatile, renewable, reusable, and biodegradable, and are composed of natural compounds. NADES were developed as a new-generation solvent for extracting chitin from black soldier fly (BSF) pupae, and its effectiveness for demineralization and deproteinization was determined. Here, two promising NADES, consisting of mixtures of choline chloride-betaine-xylitol (NADES A) and choline chloride-malic acid-water (NADES B), were tested. Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD), and scanning electron microscopy (SEM) were used to investigate the changes in the chemical composition of the extracted chitin. α-chitin revealed at wavenumbers 1660-1500 cm-1, in the amide group and decomposed at 330-350°C. NADES A and NADES B have a crystalline index of 91.65% and 90.65%, respectively. The chitin-NADES A and chitin-NADES B surfaces reveal the repetition of square, pentagonal, and hexagonal units (250× magnification) and fibrils (25,000× magnification). This study provides a green approach for chitin production from BSF and reveals the potential of NADES for extracting bio-polymers from natural sources.

Fulltext View|Download
Keywords: Black Soldier Fly (BSF); Chitin; NADES; Isolation
Funding: Universiti Teknologi PETRONAS Malaysia

Article Metrics:

  1. Marguerite Rinaudo, Chitin and chitosan: Properties and applications, Progress in Polymer Science, 31, 7, (2006), 603-632 https://doi.org/10.1016/j.progpolymsci.2006.06.001
  2. Michael Kozma, Bishnu Acharya, Rabin Bissessur, Chitin, Chitosan, and Nanochitin: Extraction, Synthesis, and Applications, Polymers, 14, 19, (2022), 3989 https://doi.org/10.3390/polym14193989
  3. Julia L. Shamshina, Paula Berton, Robin D. Rogers, Advances in Functional Chitin Materials: A Review, ACS Sustainable Chemistry & Engineering, 7, 7, (2019), 6444-6457 https://doi.org/10.1021/acssuschemeng.8b06372
  4. Thomas Hahn, Aileen Roth, Ruomin Ji, Eric Schmitt, Susanne Zibek, Chitosan production with larval exoskeletons derived from the insect protein production, Journal of Biotechnology, 310, (2020), 62-67 https://doi.org/10.1016/j.jbiotec.2019.12.015
  5. Imen Hamed, Fatih Özogul, Joe M. Regenstein, Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review, Trends in Food Science & Technology, 48, (2016), 40-50 https://doi.org/10.1016/j.tifs.2015.11.007
  6. Thomas Hahn, Elena Tafi, Aman Paul, Rosanna Salvia, Patrizia Falabella, Susanne Zibek, Current state of chitin purification and chitosan production from insects, Journal of Chemical Technology & Biotechnology, 95, 11, (2020), 2775-2795 https://doi.org/10.1002/jctb.6533
  7. M. Barrett, S. Y. Chia, B. Fischer, J. K. Tomberlin, Welfare considerations for farming black soldier flies, Hermetia illucens (Diptera: Stratiomyidae): a model for the insects as food and feed industry, Journal of Insects as Food and Feed, 9, 2, (2023), 119-148 https://doi.org/10.3920/JIFF2022.0041
  8. Andrea Scala, Jonathan A. Cammack, Rosanna Salvia, Carmen Scieuzo, Antonio Franco, Sabino A. Bufo, Jeffery K. Tomberlin, Patrizia Falabella, Rearing substrate impacts growth and macronutrient composition of Hermetia illucens (L.) (Diptera: Stratiomyidae) larvae produced at an industrial scale, Scientific Reports, 10, (2020), 19448 https://doi.org/10.1038/s41598-020-76571-8
  9. Law Yingyu, Wein Leo, Reversing the nutrient drain through urban insect farming—opportunities and challenges, AIMS Bioengineering, 5, 4, (2018), 226-237 https://doi.org/10.3934/bioeng.2018.4.226
  10. Helena Čičková, G. Larry Newton, R. Curt Lacy, Milan Kozánek, The use of fly larvae for organic waste treatment, Waste Management, 35, (2015), 68-80 https://doi.org/10.1016/j.wasman.2014.09.026
  11. L. A. Holmes, S. L. Vanlaerhoven, J. K. Tomberlin, Substrate Effects on Pupation and Adult Emergence of Hermetia illucens (Diptera: Stratiomyidae), Environmental Entomology, 42, 2, (2013), 370-374 https://doi.org/10.1603/EN12255
  12. Lise Soetemans, Maarten Uyttebroek, Leen Bastiaens, Characteristics of chitin extracted from black soldier fly in different life stages, International Journal of Biological Macromolecules, 165, (2020), 3206-3214 https://doi.org/10.1016/j.ijbiomac.2020.11.041
  13. Bojana Bradić, Uroš Novak, Blaž Likozar, Crustacean shell bio-refining to chitin by natural deep eutectic solvents, Green Processing and Synthesis, 9, 1, (2020), 13-25 https://doi.org/10.1515/gps-2020-0002
  14. Wen-Can Huang, Dandan Zhao, Na Guo, Changhu Xue, Xiangzhao Mao, Green and Facile Production of Chitin from Crustacean Shells Using a Natural Deep Eutectic Solvent, Journal of Agricultural and Food Chemistry, 66, 45, (2018), 11897-11901 https://doi.org/10.1021/acs.jafc.8b03847
  15. Huy Vu Duc Nguyen, Renko de Vries, Simeon D. Stoyanov, Chitin nanowhiskers with improved properties obtained using natural deep eutectic solvent and mild mechanical processing, Green Chemistry, 24, 9, (2022), 3834-3844 https://doi.org/10.1039/D2GC00305H
  16. Mukesh Sharma, Chandrakant Mukesh, Dibyendu Mondal, Kamalesh Prasad, Dissolution of α-chitin in deep eutectic solvents, RSC Advances, 3, 39, (2013), 18149-18155 https://doi.org/10.1039/C3RA43404D
  17. Henni Vanda, Yuntao Dai, Erica G. Wilson, Robert Verpoorte, Young Hae Choi, Green solvents from ionic liquids and deep eutectic solvents to natural deep eutectic solvents, Comptes Rendus Chimie, 21, 6, (2018), 628-638 https://doi.org/10.1016/j.crci.2018.04.002
  18. Wen-Can Huang, Dandan Zhao, Changhu Xue, Xiangzhao Mao, An efficient method for chitin production from crab shells by a natural deep eutectic solvent, Marine Life Science & Technology, 4, 3, (2022), 384-388 https://doi.org/10.1007/s42995-022-00129-y
  19. Ruipu Xin, Suijian Qi, Chaoxi Zeng, Faez Iqbal Khan, Bo Yang, Yonghua Wang, A functional natural deep eutectic solvent based on trehalose: Structural and physicochemical properties, Food Chemistry, 217, (2017), 560-567 https://doi.org/10.1016/j.foodchem.2016.09.012
  20. Liliana A. Rodrigues, Ivana Radojčić Redovniković, Ana Rita C. Duarte, Ana A. Matias, Alexandre Paiva, Low-Phytotoxic Deep Eutectic Systems as Alternative Extraction Media for the Recovery of Chitin from Brown Crab Shells, ACS Omega, 6, 43, (2021), 28729-28741 https://doi.org/10.1021/acsomega.1c03402
  21. Dana I. M. Al-Risheq, M. S. Nasser, Hazim Qiblawey, Ibnelwaleed A. Hussein, Abdelbaki Benamor, Choline chloride based natural deep eutectic solvent for destabilization and separation of stable colloidal dispersions, Separation and Purification Technology, 255, (2021), 117737 https://doi.org/10.1016/j.seppur.2020.117737
  22. Yuli Piana Dewi, Ida Zahrina, Yelmida Yelmida, Karakteristik Nades (Natural Deep Eutectic Solvents), Jurnal Online Mahasiswa (JOM) Bidang Teknik dan Sains, 8, (2021), 1-5
  23. Mohamad Shazeli Che Zain, Jen Xen Yeoh, Soo Yee Lee, Khozirah Shaari, Physicochemical Properties of Choline Chloride-Based Natural Deep Eutectic Solvents (NaDES) and Their Applicability for Extracting Oil Palm Flavonoids, Sustainability, 13, 23, (2021), 12981 https://doi.org/10.3390/su132312981
  24. Orchidea Rachmaniah, Lailatul Jumiati Fazriyah, Nurul Hesti Seftiyani, M. Rachimoellah, Tailoring properties of acidic types of Natural Deep Eutectics Solvents (NADES): Enhanced solubility of curcuminoids from Curcuma zeodaria, MATEC Web of Conferences, 2018 https://doi.org/10.1051/matecconf/201815601011
  25. Agnese Cicci, Giorgia Sed, Marco Bravi, Potential of choline chloride-based natural deep eutectic solvents (NaDES) in the extraction of microalgal metabolites, Chemical Engineering Transactions, 57, (2017), 61-66 https://doi.org/10.3303/CET1757011
  26. Ana P. R. Santana, Jorge A. Mora-Vargas, Taciana G. S. Guimarães, Clarice D. B. Amaral, Andrea Oliveira, Mario H. Gonzalez, Sustainable synthesis of natural deep eutectic solvents (NADES) by different methods, Journal of Molecular Liquids, 293, (2019), 111452 https://doi.org/10.1016/j.molliq.2019.111452
  27. Yuntao Dai, Geert-Jan Witkamp, Robert Verpoorte, Young Hae Choi, Tailoring properties of natural deep eutectic solvents with water to facilitate their applications, Food Chemistry, 187, (2015), 14-19 https://doi.org/10.1016/j.foodchem.2015.03.123
  28. Rekha Rose Koshy, Arunima Reghunadhan, Siji K. Mary, Prasanth S. Pillai, Seno Joseph, Laly A. Pothen, pH indicator films fabricated from soy protein isolate modified with chitin nanowhisker and Clitoria ternatea flower extract, Current Research in Food Science, 5, (2022), 743-751 https://doi.org/10.1016/j.crfs.2022.03.015
  29. Parag S. Bhavsar, Giulia Dalla Fontana, Marina Zoccola, Sustainable Superheated Water Hydrolysis of Black Soldier Fly Exuviae for Chitin Extraction and Use of the Obtained Chitosan in the Textile Field, ACS Omega, 6, 13, (2021), 8884-8893 https://doi.org/10.1021/acsomega.0c06040
  30. Kiki Adi Kurnia, Ardiani Putri Rahayu, Afifah Faradilla Islami, Yuly Kusumawati, I Gede Wenten, Anisa Ur Rahmah, Diana Vanda Wellia, Asep Saefumillah, Insight into the adsorption of dyes onto chitin in aqueous solution: An experimental and computational study, Arabian Journal of Chemistry, 15, 11, (2022), 104293 https://doi.org/10.1016/j.arabjc.2022.104293
  31. Lokesh Sampath, Soibam Ngasotter, Layana Porayil, Amjad Khansaheb Balange, Binaya Bhusan Nayak, Shibu Eappen, K. A. Martin Xavier, Impact of extended acid hydrolysis on polymeric, structural and thermal properties of microcrystalline chitin, Carbohydrate Polymer Technologies and Applications, 4, (2022), 100252 https://doi.org/10.1016/j.carpta.2022.100252
  32. M. K. Rasweefali, S. Sabu, K. S. Muhammed Azad, M. K. Raseel Rahman, K. V. Sunooj, A. Sasidharan, K. K. Anoop, Influence of deproteinization and demineralization process sequences on the physicochemical and structural characteristics of chitin isolated from Deep-sea mud shrimp (Solenocera hextii), Advances in Biomarker Sciences and Technology, 4, (2022), 12-27 https://doi.org/10.1016/j.abst.2022.03.001
  33. A. Jayanegara, R. P. Haryati, A. Nafisah, P. Suptijah, M. Ridla, E. B. Laconi, Derivatization of chitin and chitosan from black soldier fly (Hermetia illucens) and their use as feed additives: An in vitro study, Advances in Animal and Veterinary Sciences, 8, 5, (2020), 472-477 http://dx.doi.org/10.17582/journal.aavs/2020/8.5.472.477
  34. Yin-Shen Lin, Shih-Hsiang Liang, Wen-Lin Lai, Ja-Xin Lee, Ya-Peng Wang, Yi-Tsz Liu, Szu-Han Wang, Meng-Hwan Lee, Sustainable Extraction of Chitin from Spent Pupal Shell of Black Soldier Fly, Processes, 9, 6, (2021), 976 https://doi.org/10.3390/pr9060976
  35. Hamou Moussout, Hammou Ahlafi, Mustapha Aazza, Mohamed Bourakhouadar, Kinetics and mechanism of the thermal degradation of biopolymers chitin and chitosan using thermogravimetric analysis, Polymer Degradation and Stability, 130, (2016), 1-9 https://doi.org/10.1016/j.polymdegradstab.2016.05.016
  36. K. Thongdonson, A. Boonmahitthisud, S. Tanpichai, Effect of sodium hydroxide on properties of shrimp-shells-extracted chitin nanofibers, Journal of Physics: Conference Series, 2175, (2022), 012019 https://doi.org/10.1088/1742-6596/2175/1/012019
  37. F. N. Jumaah, N. N. Mobarak, A. Ahmad, M. A. Ghani, M. Y. A. Rahman, Derivative of iota-carrageenan as solid polymer electrolyte, Ionics, 21, (2015), 1311-1320 https://doi.org/10.1007/s11581-014-1306-x
  38. Anuradha Saini, Anil Kumar, Parmjit Singh Panesar, Avinash Thakur, Potential of deep eutectic solvents in the extraction of value‐added compounds from agro‐industrial by‐products, Applied Food Research, 2, 2, (2022), 100211 https://doi.org/10.1016/j.afres.2022.100211
  39. Jacob D. Goodrich, William T. Winter, α-Chitin Nanocrystals Prepared from Shrimp Shells and Their Specific Surface Area Measurement, Biomacromolecules, 8, 1, (2007), 252-257 https://doi.org/10.1021/bm0603589
  40. G. Patrick Stahly, Advantages of a Cu vs. Co X-ray Diffraction Source, Triclinic Labs, 2012
  41. Adam Waśko, Piotr Bulak, Magdalena Polak-Berecka, Katarzyna Nowak, Cezary Polakowski, Andrzej Bieganowski, The first report of the physicochemical structure of chitin isolated from Hermetia illucens, International Journal of Biological Macromolecules, 92, (2016), 316-320 https://doi.org/10.1016/j.ijbiomac.2016.07.038
  42. Huarui Wang, Kashif ur Rehman, Weijian Feng, Dan Yang, Rashid ur Rehman, Minmin Cai, Jibin Zhang, Ziniu Yu, Longyu Zheng, Physicochemical structure of chitin in the developing stages of black soldier fly, International Journal of Biological Macromolecules, 149, (2020), 901-907 https://doi.org/10.1016/j.ijbiomac.2020.01.293
  43. Cecile Brigode, Parinaz Hobbi, Hafez Jafari, Frederic Verwilghen, Emmanuel Baeten, Amin Shavandi, Isolation and physicochemical properties of chitin polymer from insect farm side stream as a new source of renewable biopolymer, Journal of Cleaner Production, 275, (2020), 122924 https://doi.org/10.1016/j.jclepro.2020.122924
  44. Micaela Triunfo, Elena Tafi, Anna Guarnieri, Rosanna Salvia, Carmen Scieuzo, Thomas Hahn, Susanne Zibek, Alessandro Gagliardini, Luca Panariello, Maria Beatrice Coltelli, Angela De Bonis, Patrizia Falabella, Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process, Scientific Reports, 12, (2022), 6613 https://doi.org/10.1038/s41598-022-10423-5
  45. Mi-Kyeong Jang, Byeong-Gi Kong, Young-Il Jeong, Chang Hyung Lee, Jae-Woon Nah, Physicochemical characterization of α-chitin, β-chitin, and γ-chitin separated from natural resources, Journal of Polymer Science Part A: Polymer Chemistry, 42, 14, (2004), 3423-3432 https://doi.org/10.1002/pola.20176
  46. Murat Kaya, Muhammad Mujtaba, Hermann Ehrlich, Asier M. Salaberria, Talat Baran, Chris T. Amemiya, Roberta Galli, Lalehan Akyuz, Idris Sargin, Jalel Labidi, On chemistry of γ-chitin, Carbohydrate Polymers, 176, (2017), 177-186 https://doi.org/10.1016/j.carbpol.2017.08.076
  47. Chu Yong Soon, Yee Bond Tee, Choon Hui Tan, Abdul Talib Rosnita, Abdan Khalina, Extraction and physicochemical characterization of chitin and chitosan from Zophobas morio larvae in varying sodium hydroxide concentration, International Journal of Biological Macromolecules, 108, (2018), 135-142 https://doi.org/10.1016/j.ijbiomac.2017.11.138
  48. Warayuth Sajomsang, Pattarapond Gonil, Preparation and characterization of α-chitin from cicada sloughs, Materials Science and Engineering: C, 30, 3, (2010), 357-363 https://doi.org/10.1016/j.msec.2009.11.014
  49. Sevil Erdogan, Murat Kaya, High similarity in physicochemical properties of chitin and chitosan from nymphs and adults of a grasshopper, International Journal of Biological Macromolecules, 89, (2016), 118-126 https://doi.org/10.1016/j.ijbiomac.2016.04.059

Last update:

No citation recorded.

Last update: 2024-05-09 05:58:12

No citation recorded.