skip to main content

Antibacterial Properties of Bacterial Cellulose-Quercetin Composite Membrane

1Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Garut, Garut, Indonesia

2Department of Pharmacology and Clinical Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Garut, Garut, Indonesia

Received: 23 Nov 2023; Revised: 24 May 2024; Accepted: 28 May 2024; Published: 30 Jun 2024.
Open Access Copyright 2024 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract
Bacterial cellulose has been thoroughly explored as a biomaterial for various applications due to its intrinsic mechanical, physical, and biological features. Its structural characteristics provide ideal conditions for developing composite, expanding its range of applications even further. The current study aims to synthesize quercetin-loaded bacterial cellulose composite as a potential wound dressing by utilizing the antibacterial activity of quercetin and the unique characteristics of bacterial cellulose. The produced bacterial cellulose was ex-situ modified with quercetin. The composite was characterized for its functional group by FTIR, its morphology by FE-SEM, and its antibacterial activity was evaluated against Gram-positive S. aureus and Gram-negative E. coli through the disc diffusion method. Characterization analyses confirmed the successful impregnation of quercetin into the BC matrix. The antibacterial activity of BC-Quercetin showed moderate activity, both against S. aureus and E. coli. Determining the loading dose of quercetin into bacterial cellulose is a gap for conducting future research. However, this study indicates that combining bacterial cellulose with quercetin could provide a base for developing promising alternatives for the conventional dressing system in wound healing.
Fulltext View|Download
Keywords: Bacterial cellulose; composite; quercetin; wound healing
Funding: Ministry of Education and Culture under contract 578.08/R/UNIGA/VII/2023

Article Metrics:

  1. Lara Yildirimer, Nguyen T. K. Thanh, Alexander M. Seifalian, Skin regeneration scaffolds: a multimodal bottom-up approach, Trends in Biotechnology, 30, 12, (2012), 638-648 https://doi.org/10.1016/j.tibtech.2012.08.004
  2. Marziyeh Jannesari, Jaleh Varshosaz, Mohammad Morshed, Maedeh Zamani, Composite poly (vinyl alcohol)/poly (vinyl acetate) electrospun nanofibrous mats as a novel wound dressing matrix for controlled release of drugs, International journal of nanomedicine, 6, (2011), 993-1003 https://doi.org/10.2147/IJN.S17595
  3. Alexander Dart, Mrinal Bhave, Peter Kingshott, Antimicrobial Peptide-Based Electrospun Fibers for Wound Healing Applications, Macromolecular Bioscience, 19, 9, (2019), 1800488 https://doi.org/10.1002/mabi.201800488
  4. Lu Zheng, Shanshan Li, Jiwen Luo, Xiaoying Wang, Latest Advances on Bacterial Cellulose-Based Antibacterial Materials as Wound Dressings, Frontiers in Bioengineering and Biotechnology, 8, (2020), 593768 https://doi.org/10.3389/fbioe.2020.593768
  5. Helena P. Felgueiras, Marta A. Teixeira, Tânia D. Tavares, Natália C. Homem, Andrea Zille, M. Teresa P. Amorim, Antimicrobial action and clotting time of thin, hydrated poly(vinyl alcohol)/cellulose acetate films functionalized with LL37 for prospective wound-healing applications, Journal of Applied Polymer Science, 137, 18, (2020), 48626 https://doi.org/10.1002/app.48626
  6. Wei Shao, Jimin Wu, Hui Liu, Shan Ye, Lei Jiang, Xiufeng Liu, Novel bioactive surface functionalization of bacterial cellulose membrane, Carbohydrate Polymers, 178, (2017), 270-276 https://doi.org/10.1016/j.carbpol.2017.09.045
  7. S. S. Silva, E. M. Fernandes, S. Pina, J. Silva-Correia, S. Vieira, J. M. Oliveira, R. L. Reis, 2.11 Polymers of Biological Origin☆, in: P. Ducheyne (Ed.) Comprehensive Biomaterials II, Elsevier, Oxford, 2017, https://doi.org/10.1016/B978-0-12-803581-8.10134-1
  8. Dehui Lin, Zhe Liu, Rui Shen, Siqian Chen, Xingbin Yang, Bacterial cellulose in food industry: Current research and future prospects, International Journal of Biological Macromolecules, 158, (2020), 1007-1019 https://doi.org/10.1016/j.ijbiomac.2020.04.230
  9. Wei He, Xiangqi Huang, Yudong Zheng, Yi Sun, Yajie Xie, Yansen Wang, Lina Yue, In-situ synthesis of bacterial cellulose/copper nanoparticles composite membranes with long-term antibacterial property, Journal of Biomaterials Science, Polymer Edition, 29, 17, (2018), 2137-2153 https://doi.org/10.1080/09205063.2018.1528518
  10. Patricia Cazón, Manuel Vázquez, Improving bacterial cellulose films by ex-situ and in-situ modifications: A review, Food Hydrocolloids, 113, (2021), 106514 https://doi.org/10.1016/j.foodhyd.2020.106514
  11. Riza Apriani, Nina Utami, Antimicrobial Activity of Bacterial Cellulose Modified With Plant Extracts, Jurnal Kimia Mulawarman, 20, 2, (2023), 105-119 https://doi.org/10.30872/jkm.v20i2.1203
  12. Sahel Moradian, Hadi Almasi, Sohrab Moini, Development of bacterial cellulose-based active membranes containing herbal extracts for shelf life extension of button mushrooms (Agaricus bisporus), Journal of Food Processing and Preservation, 42, 3, (2018), e13537 https://doi.org/10.1111/jfpp.13537
  13. Wasim Sajjad, Feng He, Muhammad Wajid Ullah, Muhammad Ikram, Shahid Masood Shah, Romana Khan, Taous Khan, Ayesha Khalid, Guang Yang, Fazli Wahid, Fabrication of Bacterial Cellulose-Curcumin Nanocomposite as a Novel Dressing for Partial Thickness Skin Burn, Frontiers in Bioengineering and Biotechnology, 8, (2020), 553037 https://doi.org/10.3389/fbioe.2020.553037
  14. Ioana M. Bodea, Giorgiana M. Cătunescu, Carmen R. Pop, Nicodim I. Fiț, Adriana P. David, Mircea C. Dudescu, Andreea Stănilă, Ancuța M. Rotar, Florin I. Beteg, Antimicrobial Properties of Bacterial Cellulose Films Enriched with Bioactive Herbal Extracts Obtained by Microwave-Assisted Extraction, Polymers, 14, 7, (2022), 1435 https://doi.org/10.3390/polym14071435
  15. Atiya Fatima, Sumayia Yasir, Mohd Shariq Khan, Sehrish Manan, Muhammad Wajid Ullah, Mazhar Ul-Islam, Plant extract-loaded bacterial cellulose composite membrane for potential biomedical applications, Journal of Bioresources and Bioproducts, 6, 1, (2021), 26-32 https://doi.org/10.1016/j.jobab.2020.11.002
  16. Saharman Gea, Khatarina Meldawati Pasaribu, Appealwan Altruistis Sarumaha, S. R. I. Rahayu, Cassava starch/bacterial cellulose-based bioplastics with Zanthoxylum acanthopodium, Biodiversitas Journal of Biological Diversity, 23, 5, (2022), 2601-2608 https://doi.org/10.13057/biodiv/d230542
  17. Afrizal Afrizal, Agung Purwanto, Pemanfaatan selulosa bakterial nata de coco sebagai adsorban logam Cu(II) dalam sistem berpelarut air, Jurnal Riset Sains dan Kimia Terapan, 1, 1, (2011), 27-32 https://doi.org/10.21009/JRSKT.011.05
  18. Renu Narendra Jaisinghani, Antibacterial Properties of Quercetin, Microbiology Research, 8, 1, (2017), 6877
  19. Thi Lan Anh Nguyen, Debanjana Bhattacharya, Antimicrobial Activity of Quercetin: An Approach to Its Mechanistic Principle, Molecules, 27, 8, (2022), 2494 https://doi.org/10.3390/molecules27082494
  20. Francis J. Osonga, Ali Akgul, Roland M. Miller, Gaddi B. Eshun, Idris Yazgan, Ayfer Akgul, Omowunmi A. Sadik, Antimicrobial Activity of a New Class of Phosphorylated and Modified Flavonoids, ACS Omega, 4, 7, (2019), 12865-12871 https://doi.org/10.1021/acsomega.9b00077
  21. Senay Ozgen, Ozgur Kivilcim Kilinc, Zeliha Selamoğlu, Antioxidant Activity of Quercetin: A Mechanistic Review, Turkish Journal of Agriculture - Food Science and Technology, 4, 12, (2016), 1134-1138 https://doi.org/10.24925/turjaf.v4i12.1134-1138.1069
  22. Milda E. Embuscado, Jay S. Marks, James N. BeMiller, Bacterial cellulose. I. Factors affecting the production of cellulose by Acetobacter xylinum, Food Hydrocolloids, 8, 5, (1994), 407-418 https://doi.org/10.1016/S0268-005X(09)80084-2
  23. Patricia Cerrutti, Pamela Roldán, Ricardo Martínez García, Miguel A. Galvagno, Analía Vázquez, María L. Foresti, Production of bacterial nanocellulose from wine industry residues: Importance of fermentation time on pellicle characteristics, Journal of Applied Polymer Science, 133, 14, (2016), 43109 https://doi.org/10.1002/app.43109
  24. Saeedeh Barshan, Mahmoud Rezazadeh-Bari, Hadi Almasi, Saber Amiri, Optimization and characterization of bacterial cellulose produced by Komagatacibacter xylinus PTCC 1734 using vinasse as a cheap cultivation medium, International Journal of Biological Macromolecules, 136, (2019), 1188-1195 https://doi.org/10.1016/j.ijbiomac.2019.06.192
  25. Yardrung Suwannarat, Waritchon Ninlanon, Rungtiwa Suwannarat, Komsan Muisee, Production of Bacterial Cellulose from Acetobacter xylinum by using Rambutan Juice as a Carbon Source, International Journal of Agricultural Technology, 13, 7, (2017), 1361-1369
  26. Weihua Tang, Shiru Jia, Yuanyuan Jia, Hongjiang Yang, The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane, World Journal of Microbiology and Biotechnology, 26, (2010), 125-131 https://doi.org/10.1007/s11274-009-0151-y
  27. Muhammad Wajid Ullah, Mazhar Ul-Islam, Shaukat Khan, Yeji Kim, Joong Kon Park, Structural and physico-mechanical characterization of bio-cellulose produced by a cell-free system, Carbohydrate Polymers, 136, (2016), 908-916 https://doi.org/10.1016/j.carbpol.2015.10.010
  28. Mazhar Ul-Islam, Taous Khan, Joong Kon Park, Water holding and release properties of bacterial cellulose obtained by in-situ and ex situ modification, Carbohydrate Polymers, 88, 2, (2012), 596-603 https://doi.org/10.1016/j.carbpol.2012.01.006
  29. Mazhar Ul-Islam, Waleed Ahmad Khattak, Muhammad Wajid Ullah, Shaukat Khan, Joong Kon Park, Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications, Cellulose, 21, (2014), 433-447 https://doi.org/10.1007/s10570-013-0109-y
  30. Muhammad Wajid Ullah, Mazhar Ul-Islam, Shaukat Khan, Yeji Kim, Jae Hyun Jang, Joong Kon Park, In-situ synthesis of a bio-cellulose/titanium dioxide nanocomposite by using a cell-free system, RSC Advances, 6, 27, (2016), 22424-22435 https://doi.org/10.1039/C5RA26704H

Last update:

No citation recorded.

Last update: 2024-12-24 10:48:31

No citation recorded.