skip to main content

The Effect of Calcination Temperature on the Characteristics of CeO₂ Synthesized Using the Precipitation Method

Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia

Received: 18 Jan 2024; Revised: 22 Apr 2024; Accepted: 26 Apr 2024; Published: 31 May 2024.
Open Access Copyright 2024 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Cerium oxide (CeO2) was synthesized using the precipitation method at various calcination temperatures ranging from 500 to 700°C. Cerium(III) nitrate hexahydrate (Ce(NO)3.6H2O) was used as the precursor for cerium, while Cetyltrimethylammonium bromide (CTAB) acted as the morphology-directing agent. Characterization results indicated that pure CeO2 was obtained at all calcination temperature variations. Calcination temperature influences crystallinity, crystal size, and CeO2 crystal parameters. The crystallinity and crystal size of CeO2 increased with the rising calcination temperature, reaching values of 81.1–84.5% and 15.58–23.12 nm, respectively, along with larger crystal parameters as the temperature increased (a = 5.406–5.410 Å). Surface morphology showed irregular shapes of CeO2 particles, with decreasing sizes as the calcination temperature increased, ranging from 0.2-5.6 μm at 600°C to 0.12-2.9 μm at 700°C. The Ce/O ratio on the surface increased with the rising calcination temperature, reaching a range of 0.48–0.57. CeO2 obtained from calcination at 600°C exhibited the highest fluorescence emission intensity (λ= 496 nm), indicating the least oxygen vacancies presence. Therefore, for antioxidant and catalyst applications, it is preferable to calcinate CeO2 at 700°C.

Fulltext View|Download
Keywords: Cerium oxide; Calcination; Precipitation

Article Metrics:

  1. Anna Shelyug, Alexandra Navrotsky, Thermodynamic stability of the fluorite phase in the CeO2 − CaO − ZrO2 system, Journal of Nuclear Materials, 517, (2019), 80-85 https://doi.org/10.1016/j.jnucmat.2019.01.043
  2. Ivana Celardo, Jens Z. Pedersen, Enrico Traversa, Lina Ghibelli, Pharmacological potential of cerium oxide nanoparticles, Nanoscale, 3, 4, (2011), 1411-1420 https://doi.org/10.1039/C0NR00875C
  3. Soichi Takasugi, Yugo Miseki, Kotaro Sasaki, Etsuko Fujita, Kazuhiro Sayama, Significance of an anion effect in the selective oxidation of Ce3+ to Ce4+ over a porous WO3 photoanode, Electrochimica Acta, 307, (2019), 369-374 https://doi.org/10.1016/j.electacta.2019.03.178
  4. K. Kowsuki, R. Nirmala, Yong-Ho Ra, R. Navamathavan, Recent advances in cerium oxide-based nanocomposites in synthesis, characterization, and energy storage applications: A comprehensive review, Results in Chemistry, 5, (2023), 100877 https://doi.org/10.1016/j.rechem.2023.100877
  5. Ziwen Wang, Kaimeng Zhao, Shixiang Lu, Wenguo Xu, Application of flammulina-velutipes-like CeO2/Co3O4/rGO in high-performance asymmetric supercapacitors, Electrochimica Acta, 353, (2020), 136599 https://doi.org/10.1016/j.electacta.2020.136599
  6. Andrea Cárdenas-Arenas, Helena Soriano Cortés, Esther Bailón-García, Arantxa Davó-Quiñonero, Dolores Lozano-Castelló, Agustín Bueno-López, Active, selective and stable NiO-CeO2 nanoparticles for CO2 methanation, Fuel Processing Technology, 212, (2021), 106637 https://doi.org/10.1016/j.fuproc.2020.106637
  7. Jaganathan Sakthi Yazhini Preetha, Duraisampath Sriram, Paramasivam Premasudha, Ramesh Namdeo Pudake, Muthukrishnan Arun, Cerium oxide as a nanozyme for plant abiotic stress tolerance: An overview of the mechanisms, Plant Nano Biology, 6, (2023), 100049 https://doi.org/10.1016/j.plana.2023.100049
  8. Alexander Filippi, Fobang Liu, Jake Wilson, Steven Lelieveld, Karsten Korschelt, Ting Wang, Yueshe Wang, Tobias Reich, Ulrich Pöschl, Wolfgang Tremel, Haijie Tong, Antioxidant activity of cerium dioxide nanoparticles and nanorods in scavenging hydroxyl radicals, RSC Advances, 9, 20, (2019), 11077-11081 https://doi.org/10.1039/C9RA00642G
  9. I. Nurhasanah, W. Safitri, Z. Arifin, A. Subagio, T. Windarti, Antioxidant activity and dose enhancement factor of CeO2 nanoparticles synthesized by precipitation method, IOP Conference Series: Materials Science and Engineering, 432, (2018), 012031 https://doi.org/10.1088/1757-899X/432/1/012031
  10. Xiaojiao Yang, Ying Liu, Jun Li, Yuliang Zhang, Effects of calcination temperature on morphology and structure of CeO2 nanofibers and their photocatalytic activity, Materials Letters, 241, (2019), 76-79 https://doi.org/10.1016/j.matlet.2019.01.006
  11. A. Balamurugan, M. Sudha, S. Surendhiran, R. Anandarasu, S. Ravikumar, Y. A. Syed Khadar, Hydrothermal synthesis of samarium (Sm) doped cerium oxide (CeO2) nanoparticles: Characterization and antibacterial activity, Materials Today: Proceedings, 26, (2020), 3588-3594 https://doi.org/10.1016/j.matpr.2019.08.217
  12. N. S. Ferreira, R. S. Angélica, V. B. Marques, C. C. O. de Lima, M. S. Silva, Cassava-starch-assisted sol–gel synthesis of CeO2 nanoparticles, Materials Letters, 165, (2016), 139-142 https://doi.org/10.1016/j.matlet.2015.11.107
  13. Yoki Yulizar, Sumandi Juliyanto, Sudirman, Dewangga Oky Bagus Apriandanu, Rizki Marcony Surya, Novel sol-gel synthesis of CeO2 nanoparticles using Morinda citrifolia L. fruit extracts: Structural and optical analysis, Journal of Molecular Structure, 1231, (2021), 129904 https://doi.org/10.1016/j.molstruc.2021.129904
  14. Mmajid Farahmandjou, Mahkameh Dastpak, Synthesis of Fe-doped CeO2 Nanoparticles Prepared by Solgel Method, Journal of Sciences, Islamic Republic of Iran, 31, 1, (2020), 39-43 https://doi.org/10.22059/jsciences.2020.256813.1007255
  15. Natarajan Sisubalan, Vijayan Sri Ramkumar, Arivalagan Pugazhendhi, Chandrasekaran Karthikeyan, Karuppusamy Indira, Kasi Gopinath, Abdulrahman Syedahamed Haja Hameed, Mohamed Hussain Ghouse Basha, ROS-mediated cytotoxic activity of ZnO and CeO2 nanoparticles synthesized using the Rubia cordifolia L. leaf extract on MG-63 human osteosarcoma cell lines, Environmental Science and Pollution Research, 25, 11, (2018), 10482-10492 https://doi.org/10.1007/s11356-017-0003-5
  16. Saynaz Aseyd Nezhad, Ali Es-haghi, Masoud Homayouni Tabrizi, Green synthesis of cerium oxide nanoparticle using Origanum majorana L. leaf extract, its characterization and biological activities, Applied Organometallic Chemistry, 34, 2, (2020), e5314 https://doi.org/10.1002/aoc.5314
  17. Asghar Zamani, Ahmad Poursattar Marjani, Khadijeh Alimoradlu, Walnut Shell-Templated Ceria Nanoparticles: Green Synthesis, Characterization and Catalytic Application, International Journal of Nanoscience, 17, 06, (2018), 1850008 https://doi.org/10.1142/S0219581X18500084
  18. J. Malleshappa, H. Nagabhushana, B. Daruka Prasad, S. C. Sharma, Y. S. Vidya, K. S. Anantharaju, Structural, photoluminescence and thermoluminescence properties of CeO2 nanoparticles, Optik, 127, 2, (2016), 855-861 https://doi.org/10.1016/j.ijleo.2015.10.114
  19. Sanjivani V. Umale, Sneha N. Tambat, Sharad M. Sontakke, Combustion synthesized CeO2 as an anodic material in dye sensitized solar cells, Materials Research Bulletin, 94, (2017), 483-488 https://doi.org/10.1016/j.materresbull.2017.07.004
  20. Balaraju Bayyappagari, Kaleemulla Shaik, Madhusudhana Rao Nasina, Omkaram Inturu, Sreekantha Reddy Dugasani, Effect of Fe substitution on optical and magnetic properties of CeO2 nanoparticles, Optik, 154, (2018), 821-827 https://doi.org/10.1016/j.ijleo.2017.10.025
  21. Sumetha Suwanboon, Pongsaton Amornpitoksuk, Phuwadol Bangrak, The improvement of the band gap energy and antibacterial activities of CeO2/ZnO nanocomposites prepared by high energy ball milling, Warasan Khana Witthayasat Maha Witthayalai Chiang Mai, 45, (2018), 1129-1137
  22. Huey-Ing Chen, Hung-Yi Chang, Synthesis of nanocrystalline cerium oxide particles by the precipitation method, Ceramics International, 31, 6, (2005), 795-802 https://doi.org/10.1016/j.ceramint.2004.09.006
  23. M. Farahmandjou, M. Zarinkamar, T. P. Firoozabadi, Synthesis of Cerium Oxide (CeO2) nanoparticles using simple CO-precipitation method, Revista mexicana de física, 62, (2016), 496-499
  24. M. Ramachandran, R. Subadevi, M. Sivakumar, Role of pH on synthesis and characterization of cerium oxide (CeO2) nano particles by modified co-precipitation method, Vacuum, 161, (2019), 220-224 https://doi.org/10.1016/j.vacuum.2018.12.002
  25. M. Li, R. Zhang, H. Zhang, W. Feng, X. Liu, Synthesis, structural and magnetic properties of CeO2 nanoparticles, Micro & Nano Letters, 5, 2, (2010), 95-99 https://doi.org/10.1049/mnl.2009.0092
  26. Iis Nurhasanah, Weni Safitri, Tri Windarti, Agus Subagio, The Calcination Temperature Effect on The Antioxidant and Radioprotection Properties of CeO2 Nanoparticles, Reaktor, 18, 1, (2018), 22-26 https://doi.org/10.14710/reaktor.18.1.22-26
  27. Yuliia Shlapa, Serhii Solopan, Veronika Sarnatskaya, Katarina Siposova, Ivana Garcarova, Katerina Veltruska, Illia Timashkov, Oleksandra Lykhova, Denis Kolesnik, Andrey Musatov, Vladimir Nikolaev, Anatolii Belous, Cerium dioxide nanoparticles synthesized via precipitation at constant pH: Synthesis, physical-chemical and antioxidant properties, Colloids and Surfaces B: Biointerfaces, 220, (2022), 112960 https://doi.org/10.1016/j.colsurfb.2022.112960
  28. Rahul Dheerendra Singh, Prashant Bhimrao Koli, Bapu Sonu Jagdale, Arun Vitthal Patil, Effect of firing temperature on structural and electrical parameters of synthesized CeO2 thick films, SN Applied Sciences, 1, 4, (2019), 315 https://doi.org/10.1007/s42452-019-0246-5
  29. Kota Shiba, Satoshi Motozuka, Tadashi Yamaguchi, Nobuhiro Ogawa, Yuichi Otsuka, Kiyoshi Ohnuma, Takuya Kataoka, Motohiro Tagaya, Effect of Cationic Surfactant Micelles on Hydroxyapatite Nanocrystal Formation: An Investigation into the Inorganic–Organic Interfacial Interactions, Crystal Growth & Design, 16, 3, (2016), 1463-1471 https://doi.org/10.1021/acs.cgd.5b01599
  30. Ata Chitsaz, Marzieh Jalilpour, Mohammad Fathalilou, Effects of PVP and CTAB surfactants on the morphology of cerium oxide nanoparticles synthesized via co-precipitation method, International Journal of Materials Research, 104, 5, (2013), 511-514 https://doi.org/10.3139/146.110927
  31. R. Suresh, V. Ponnuswamy, R. Mariappan, Effect of annealing temperature on the microstructural, optical and electrical properties of CeO2 nanoparticles by chemical precipitation method, Applied Surface Science, 273, (2013), 457-464 https://doi.org/10.1016/j.apsusc.2013.02.062
  32. V. Morris, P. G. Fleming, J. D. Holmes, M. A. Morris, Comparison of the preparation of cerium oxide nanocrystallites by forward (base to acid) and reverse (acid to base) precipitation, Chemical Engineering Science, 91, (2013), 102-110 https://doi.org/10.1016/j.ces.2013.01.016
  33. S. A. Hassanzadeh-Tabrizi, Mehdi Mazaheri, M. Aminzare, S. K. Sadrnezhaad, Reverse precipitation synthesis and characterization of CeO2 nanopowder, Journal of Alloys and Compounds, 491, 1, (2010), 499-502 https://doi.org/10.1016/j.jallcom.2009.10.243
  34. G. Jayakumar, A. Albert Irudayaraj, A. Dhayal Raj, Investigation on the synthesis and photocatalytic activity of activated carbon–cerium oxide (AC–CeO2) nanocomposite, Applied Physics A, 125, 11, (2019), 742 https://doi.org/10.1007/s00339-019-3044-4
  35. Georgi N. Vayssilov, Mihail Mihaylov, Petko St Petkov, Konstantin I. Hadjiivanov, Konstantin M. Neyman, Reassignment of the Vibrational Spectra of Carbonates, Formates, and Related Surface Species on Ceria: A Combined Density Functional and Infrared Spectroscopy Investigation, The Journal of Physical Chemistry C, 115, 47, (2011), 23435-23454 https://doi.org/10.1021/jp208050a
  36. P. A. Sheena, K. P. Priyanka, Boby Sabu, Thomas Varghese, Effect of calcination temperature on the structural and optical properties of nickel oxide nanoparticles, Nanosystems: Physics, Chemistry, Mathematics, 5, 3, (2014), 441-449
  37. H. F. Lopez, H. Mendoza, Temperature Effects on the Crystallization and Coarsening of Nano-CeO2 Powders, ISRN Nanomaterials, 2013, (2013), 208614 https://doi.org/10.1155/2013/208614
  38. Yuki Tsuda, Kyota Uda, Misaki Chiba, He Sun, Lina Sun, Matthew Schuette White, Akito Masuhara, Tsukasa Yoshida, Selective hybridization of organic dyes with CuSCN during its electrochemical growth, Microsystem Technologies, 24, 1, (2018), 715-723 https://doi.org/10.1007/s00542-017-3394-9
  39. Mario E Rodriguez-Garcia, Sandra M Londoño-Restrepo, Cristian F Ramirez-Gutierrez, Beatriz Millan-Malo, Effect of the crystal size on the X-ray diffraction patterns of isolated orthorhombic starches: A-type, arXiv preprint arXiv, (2018), 1808.02966 https://doi.org/10.48550/arXiv.1808.02966
  40. Tri Windarti, Anita Listiyani Dewi, Cahaya Ratu Indra Bulan, Regita Pramesti, Sintesis CeO2 Dengan Metode Green Synthesis: Studi Sifat Fluoresen, Greensphere: Journal of Environmental Chemistry, 2, 2, (2023), 13-17
  41. Biswajit Choudhury, Pawan Chetri, Amarjyoti Choudhury, Annealing temperature and oxygen-vacancy-dependent variation of lattice strain, band gap and luminescence properties of CeO2 nanoparticles, Journal of Experimental Nanoscience, 10, 2, (2015), 103-114 https://doi.org/10.1080/17458080.2013.801566

Last update:

No citation recorded.

Last update: 2024-06-29 18:23:26

No citation recorded.