skip to main content

Synthesis of Styrofoam Waste-Derived Activated Carbon as an Electron Extractor for Modifying Cu/P-CuSCN/N-Cu₂O/ITO Photovoltaic Cells

Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto, SH., Tembalang, Semarang, Indonesia

Received: 4 Jul 2024; Revised: 17 Oct 2024; Accepted: 28 Oct 2024; Published: 30 Oct 2024.
Open Access Copyright 2024 Jurnal Kimia Sains dan Aplikasi under http://creativecommons.org/licenses/by-sa/4.0.

Citation Format:
Cover Image
Abstract

Activated carbon synthesized from styrofoam waste was applied as an electron extractor to enhance the performance of Cu/p-CuSCN/n-Cu2O/ITO-based photovoltaic cells. The widespread use of plastic products, particularly styrofoam, has led to severe environmental pollution due to its long decomposition time. Styrofoam waste-derived activated carbon utilizes polystyrene, which is rich in carbon, to produce high-surface-area materials. In this study, the activated carbon enhances the efficiency of photogenerated electron separation and extraction in photovoltaic cells. Characterization results indicate that the activated carbon has a surface area of 1,865.04 m2/g, a pore volume of 1.25 cm3/g, and a pore diameter of 2.53–2.68 nm, with a direct band gap energy of 4.33 eV. Voltage testing on the photovoltaic cells demonstrated a significant increase, with the highest voltage reaching 209.67 mV in the 5 mg activated carbon variation, representing a 34.84% improvement. The application of activated carbon in Cu/p-CuSCN/n-Cu2O/ITO-based photovoltaic cells provided a notable voltage increase, confirming its effectiveness as an electron extractor.

Fulltext View|Download
Keywords: Activated carbon; Photovoltaic; Styrofoam waste; Electron extractor
Funding: Kemdikbudristek under contract Program Kreativitas Mahasiswa Riset Eksakta (PKM RE) 2023

Article Metrics:

  1. World Population Review, Plastic Pollution by Country, 2016
  2. M. M. Harussani, S. M. Sapuan, Umer Rashid, A. Khalina, R. A. Ilyas, Pyrolysis of polypropylene plastic waste into carbonaceous char: Priority of plastic waste management amidst COVID-19 pandemic, Science of The Total Environment, 803, (2022), 149911 https://doi.org/10.1016/j.scitotenv.2021.149911
  3. Kartika Udyani, Erlinda Ningsih, Ambarwati Syahdiana Umar, Pengolahan Sampah Plastik Kemasan Minyak Goreng dan Tutup Botol menjadi Karbon Aktif, Prosiding SENASTITAN: Seminar Nasional Teknologi Industri Berkelanjutan, 2021
  4. Alimuddin Muchtar, Analisis Emisi CO2 PLTP Ulubelu Lampung dan Kotribusinya Terhadap Pengembangan Pembangkit Listrik di Provinsi Lampung, Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management), 9, 2, (2019), 288-303 https://doi.org/10.29244/jpsl.9.2.288-303
  5. Xinzheng Lan, Silvia Masala, Edward H. Sargent, Charge-extraction strategies for colloidal quantum dot photovoltaics, Nature Materials, 13, 3, (2014), 233-240 https://doi.org/10.1038/nmat3816
  6. Jarosław Serafin, Mohammed Ouzzine, Congcong Xing, Hajar El Ouahabi, Adrianna Kamińska, Joanna Sreńscek-Nazzal, Activated carbons from the Amazonian biomass andiroba shells applied as a CO2 adsorbent and a cheap semiconductor material, Journal of CO2 Utilization, 62, (2022), 102071 https://doi.org/10.1016/j.jcou.2022.102071
  7. Sangtae Kim, Miso Lee, Changho Hong, Youngchae Yoon, Hyungmin An, Dongheon Lee, Wonseok Jeong, Dongsun Yoo, Youngho Kang, Yong Youn, Seungwu Han, A band-gap database for semiconducting inorganic materials calculated with hybrid functional, Scientific Data, 7, (2020), 387 https://doi.org/10.1038/s41597-020-00723-8
  8. Jun Liu, Michael Durstock, Liming Dai, Graphene oxide derivatives as hole- and electron-extraction layers for high-performance polymer solar cells, Energy & Environmental Science, 7, 4, (2014), 1297-1306 https://doi.org/10.1039/C3EE42963F
  9. A. R. Hidayu, N. F. Mohamad, S. Matali, A. S. A. K. Sharifah, Characterization of Activated Carbon Prepared from Oil Palm Empty Fruit Bunch Using BET and FT-IR Techniques, Procedia Engineering, 68, (2013), 379-384 https://doi.org/10.1016/j.proeng.2013.12.195
  10. L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, I. Bieloshapka, Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods, Journal of Electron Spectroscopy and Related Phenomena, 195, (2014), 145-154 https://doi.org/10.1016/j.elspec.2014.07.003
  11. P. G. D. C. K. Karunarathna, C. A. N. Fernando, S. N. T. De Silva, Photocurrent Enhancement of Cu/p-CuSCN/n-Cu2O Quantum Dot (QD) Novel Solid State Photovoltaic Cell with Coconut Shell Activated Carbon (CAC) as the Upper Electrode, Journal of Scientific and Technical Research, 6, 2, (2016),
  12. Fabiano G. F. de Paula, Mateus C. M. de Castro, Paulo F. R. Ortega, Clara Blanco, Rodrigo L. Lavall, Ricardo Santamaría, High value activated carbons from waste polystyrene foams, Microporous and Mesoporous Materials, 267, (2018), 181-184 https://doi.org/10.1016/j.micromeso.2018.03.027
  13. P. G. D. C. K. Karunarathna, S. P. A. U. K. Samarakoon, C. A. N. Fernando, Explanation of the photocurrent generation of Cu2O quantum dots (QDs) sensitized p-CuSCN stable photoelectrochemical cells, Materials Research Express, 5, (2018), 015005 https://doi.org/10.1088/2053-1591/aa9aa8
  14. Syarwan Hamid, Andi Aladin, Basri Modding, Takdir Syarif, Lastri Wiyani, Muh Arman, Pengaruh Aliran Nitrogen Kontinyu ke Dalam Reaktor Pirolisis Limbah Biomassa Serbuk Gergaji Batang Kelapa (Cocos Nucifera) Terhadap Nilai Kalor, Journal of Chemical Process Engineering, 8, 1, (2023), 1-6
  15. S. Pérez-Huertas, M. Calero, A. Ligero, A. Pérez, K. Terpiłowski, M. A. Martín-Lara, On the use of plastic precursors for preparation of activated carbons and their evaluation in CO2 capture for biogas upgrading: a review, Waste Management, 161, (2023), 116-141 https://doi.org/10.1016/j.wasman.2023.02.022
  16. Ulrike Ciesla, Ferdi Schüth, Ordered mesoporous materials, Microporous and Mesoporous Materials, 27, 2, (1999), 131-149 https://doi.org/10.1016/S1387-1811(98)00249-2
  17. Jasminder Singh, Soumen Basu, Haripada Bhunia, Dynamic CO2 adsorption on activated carbon adsorbents synthesized from polyacrylonitrile (PAN): Kinetic and isotherm studies, Microporous and Mesoporous Materials, 280, (2019), 357-366 https://doi.org/10.1016/j.micromeso.2019.02.031
  18. Chao Ge, Jian Song, Zhangfeng Qin, Jianguo Wang, Weibin Fan, Polyurethane Foam-Based Ultramicroporous Carbons for CO2 Capture, ACS Applied Materials & Interfaces, 8, 29, (2016), 18849-18859 https://doi.org/10.1021/acsami.6b04771
  19. Noemi Linares, Ana M. Silvestre-Albero, Elena Serrano, Joaquín Silvestre-Albero, Javier García-Martínez, Mesoporous materials for clean energy technologies, Chemical Society Reviews, 43, 22, (2014), 7681-7717 https://doi.org/10.1039/c3cs60435g
  20. Salmon Landi, Iran Rocha Segundo, Elisabete Freitas, Mikhail Vasilevskiy, Joaquim Carneiro, Carlos José Tavares, Use and misuse of the Kubelka-Munk function to obtain the band gap energy from diffuse reflectance measurements, Solid State Communications, 341, (2022), 114573 https://doi.org/10.1016/j.ssc.2021.114573
  21. M. K. Halimah, W. H. Chiew, H. A. A. Sidek, W. M. Daud, Z. A. Wahab, A. M. Khamirul, SM Iskandar, Optical properties of lithium borate glass (Li2O)x (B2O3), Sains Malaysiana, 43, 6, (2014), 899-902
  22. S. K. Shahcheragh, M. M. Bagheri Mohagheghi, A. Shirpay, Effect of physical and chemical activation methods on the structure, optical absorbance, band gap and urbach energy of porous activated carbon, SN Applied Sciences, 5, 12, (2023), 313 https://doi.org/10.1007/s42452-023-05559-6
  23. Luna Jena, Dhani Soren, Pratap Kumar Deheri, Puspalata Pattojoshi, Preparation, characterization and optical properties evaluations of bamboo charcoal, Current Research in Green and Sustainable Chemistry, 4, (2021), 100077 https://doi.org/10.1016/j.crgsc.2021.100077
  24. Patrick Tonui, Saheed O. Oseni, Gaurav Sharma, Qingfenq Yan, Genene Tessema Mola, Perovskites photovoltaic solar cells: An overview of current status, Renewable and Sustainable Energy Reviews, 91, (2018), 1025-1044 https://doi.org/10.1016/j.rser.2018.04.069
  25. Elang Barruna, Atya Saniah, Siti Fauziyah Rahman, Nji Raden Poespawati, Material Characteristics and Electrical Performance of Perovskite Solar Cells with Different Carbon-Based Electrodes Mixed with CuSCN, Journal of Electrical and Computer Engineering, 2023, 1, (2023), 8931693 https://doi.org/10.1155/2023/8931693
  26. Rui He, Xiaozhou Huang, Mason Chee, Feng Hao, Pei Dong, Carbon-based perovskite solar cells: From single-junction to modules, Carbon Energy, 1, 1, (2019), 109-123 https://doi.org/10.1002/cey2.11

Last update:

No citation recorded.

Last update: 2024-12-01 02:29:29

No citation recorded.