Potensi Pembentukan Air Asam Tambang Pada PIT 3000, Blok Toraja, PT Trubaindo Coal Mining Berdasarkan Studi Karakteristik Geokimia dan Mineralogi Batuan Overburden dan Underburden

Potential of Acid Mine Formation in PIT 3000, Toraja Block, PT Trubaindo Coal Mining Based on Geochemical and Mineralogical Characteristics Study of Overburden and Underburden Rocks

*Tri Winarno  -  Universitas Diponegoro, Indonesia
Rinal Khaidar Ali  -  Universitas Diponegoro, Indonesia
Wesly Rambu Langit  -  Universitas Diponegoro, Indonesia
Received: 6 Nov 2019; Revised: 20 Jan 2020; Accepted: 22 Jan 2020; Published: 31 Mar 2020; Available online: 22 Apr 2020.
Open Access
Citation Format:
Article Info
Section: Research Article
Language: ID
Statistics: 265 31
Abstract
Coal mining in Indonesia is mostly applied by an open pit system which causes the rocks in the mining location to be exposed to the surface, so that it will be easy to react with air and water directly. The high content of sulphide minerals such as pyrite and marcasite in coal mining site, has the potential to produce mine acid water. Mine acid water causes environmental pollution and a threat to aquatic and soil ecosystems by increasing the concentration of other heavy metal ions. This study aims to identify the mineral content of the overburden rock layers to determine the type of sulfide minerals forming acid mine and neutralizing minerals in rocks. The methods used in this study are field investigations, mineralogical content analysis, geochemical characteristics and measured stratigraphic to evaluate mineralogical content, geochemical characteristics and depositional environmental facies of overburden and underburden rocks from the Pit 3000 coal seam. The results showed that overburden rocks were composed by claystone with the thickness ranges 1.60 m – 5.15 m, whereas underburden rocks are characterized by diverse lithology such as claystone, siltstone and sandstone with the thickness ranges from 0.20 m – 4.50 m. Based on geochemical analysis on 18 overburden rock samples, it is known that overburden layers have characteristics that are dominated by Non Acid Forming (NAF) rocks with 83% NAF, 11% Potential Acid Forming (PAF) and 6% uncertain. The characteristics of the underburden layer are dominated by PAF rocks with 45% PAF, 19% NAF and 36% uncertain.
Keywords: Coal mine; mine acid water; mineralogy; geochemistry

Article Metrics:

  1. AMIRA. 2002. ARD Test Handbook, Project P387A Prediction & Kinetic Control of Acid Mine Drainage. Ian Wark Research Institute, William Street Melbourne 3000, Australia.
  2. Anggayana, K. 2002. Genesa Batubara. Departemen Teknik Pertambangan, FIKTM, Institut Teknologi Bandung.
  3. Demchuk, T. D. 1992. Epigenetic Pyrite in a Low-Sulphur, Sub-Bituminous Coal From Central Alberta Plains. International Journal of Coal Geology, 21, 187-196.
  4. Dai, S., Li, T., Jiang, Y., Ward, C.R., Hower, J.C., Sun, J., Liu, J., Song, H., Wei, J., Li, Q., Xie, P. and Huang, Q. 2015. Mineralogical and Geochemical Compositions of Pennsylvanian Coal in The Hailiushu Mine, Daqingshan Coalfield, Inner Mongolia, China: Implications of Sediment-Source Region and Acid Hydrothermal Solutions. International Journal of Coal Geology, 137, 92-110.
  5. Gautama, R.S and Kusuma, G.J. 2012. Evaluation of Geochemist Test in Predicting Acid Mine Drainage Potential in Coal Surface Mine. 5th International Mine Water Congress, Nottingham. U.K.
  6. Gautama, R.S., Novianti, Y. S. dan Supringgo, E. 2014. Review on In-pit Treatment of Acidic Pit Lake in Jorong Coal Mine, South Kalimantan, Indonesia. China University of Mining and Technology Press, Xuzhou.
  7. Gomo, M. 2018. Conceptual hydrochemical characteristics of a calcite and dolomite acid mine drainage neutralized circum neutral groundwater system. Water Science, 32(2), 355-361.
  8. Hidayat, L. 2017. Pengelolaan Lingkungan Areal Tambang Batubara (Studi Kasus Pengelolaan Air Asam Tambang ( Acid Mining Drainage) di PT. Bhumi Rantau Energi Kabupaten Tapin Kalimantan Selatan). Jurnal ADHUM, VII(1), 44-52.
  9. Islamunisa, F., Bohari dan Panggabean, A. S. 2018. Pemanfaatan Air Asam tambang Batubara Sebagai Sumber Energi Listrik Alternatif. Atomik, 03 (1), 22-25.
  10. Kasmiani, Widodo, S. dan Bakri, H. 2018. Analisis Potensi Air Asam tambang pada Batuan Pengapit Batubara di Salopuru Berdasarkan Karakteristik Geokimia. Geomine, 6(3), 138-144.
  11. Kusuma, G.J., Shimada, H., Sasaoka, T., Kikuo, M., Nugraha, C., Gautama, R.S.& Sulistianto, B. 2012. Physical and Geochemical Characteristics of Mine Overburden Dump Related to Acid Mine Drainage Generation. Kyushu University.
  12. Mansyur, A. 2014. Studi Potensi Pembentukan Air Asam Tambang Lapisan Tanah Penutup (Overburden) Tambang Batubara Menggunakan Leach Column Test, Flooding Test dan NAG Test. Universitas Pendidikan Indonesia.
  13. McClay, K. 2002. Tertiary Evolution of The Sanga-Sanga Block, Mahakam Delta, Indonesia. AAPG Bulletin, 84, 765-786.
  14. Qureshi, A., Maurice, C. and Ohlander, B. 2016. Potential of Coal Mine Waste Rock for Generating Acid Mine Drainage. Geochemical Exploration, 160, 44-54.
  15. Raden, I. 2010. Kajian Dampak Penambangan Batubara Terhadap Pengembangan Sosial Ekonomi di Kabupaten Kutai Kertanegara. Badan Penelitian dan Pengembangan Dalam Negeri, Jakarta.
  16. Said, N. I. 2014. Teknologi Pengolahan Air Asam Tambang Batubara “Alternatif Pemilihan Teknologi”. Jurnal Air Indonesia, 7(2), 119-138.
  17. Saputra, M.W. 2014. Efektivitas Penurunan Fe dan Mn Pada Air Asam Tambang Dengan Tanaman Purun Tikus (Eleocharis dulcis) dan Kayu Apu Menggunakan Sistem Lahan Basah Buatan Metode Batch Bertingkat. Teknik Lingkungan, Universitas Lambung Mangkurat.
  18. Sukardi, R., Supriatna, S. dan Rustandi, E. 1995. Peta Geologi Lembar Sangatta, Kalimantan Timur. Pusat Penelitian dan Pengembangan Geologi, Bandung.
  19. Taylor, G. H., Teichmuller, M., Davis, A., Diessel, C.F.K., Robert, P. and Littke, R. 1998. Organic Petrology. Berlin, Stuttgart, Germany.
  20. Wijaya, R. A. E. 2010. Sistem pengolahan Air Asam pada Waterpond dan Aplikasi Model Encapsulation in-pit Disposal pada Waste Dump Tambang Batubara. Jurnal Manusia dan Lingkungan, 17(1), 1-10.
  21. Wilkinson, M., Haszeldine, R.S., Morton, A. dan Fallick, A. E. 2014. Deep burial dissolution of K-feldspars in a fluvial sandstone, Pentland Formation UK Central North Sea. Geological Society, 171, 635-647.