skip to main content

A Brief of Water and Soil Pollution Management (Recent Trend and Economic Perspective)

*Muhammad Safri  -  Universitas Jambi, Indonesia
Nurhayani Nurhayani  -  Universitas Jambi, Indonesia
Desy Rosarina  -  Universitas Muhammadiyah Tangerang, Indonesia

Citation Format:

Soil and water pollution are the most crucial issues in the world. Various reports have informed that pollution has had long-term adverse effects on environmental sustainability and human health. Several methods have been reported to be effective in reducing pollutant parameters in water and soil. The methods often used in water and soil remediation are bioremediation (land-vetting, bio-cell. Bio cell, Phytoremediation, Land venting, Composite, Bio venting, Bio slurry), Adsorption, Pretreatment (Ultrasonic), Microwave, Electrokinetic disintegration, High-Pressure Homogenization/HPH, Thermal Hydrolysis, Acid hydrolysis (HCl, H2SO4, H3PO4, and HNO3), Ozonation, Fenton Oxidation, Fe (II) -activated persulfate, Protease, amylase, lipase. This paper will explain water and soil pollution and the methods used to overcome them. Information collection is carried out using secondary data; internationally reputable journals and accredited national journals are used to obtain information about the effectiveness and costs incurred. This paper will provide a holistic comparison of prices, effectiveness, and information on various remediating water and soil pollution methods around the world. Based on the NPV and IRR analysis, the water treatment method using the adsorption method is an economically feasible method with an IRR value of 51%.

Fulltext View|Download
Keywords: Economic analysis; soil; water; wastewater; wastewater treatment

Article Metrics:

  1. Ali, I., AL-Othman, Z.A., Alwarthan, A., 2016. Green synthesis of functionalized iron nano particles and molecular liquid phase adsorption of ametryn from water. J. Mol. Liq. 221, 1168–1174
  2. Anh, V.T., Tram, N.T., Klank, L.T., Cam, P.D., Dalsgaard, A., 2007. Faecal and protozoan parasite contamination of water spinach (Ipomoea aquatica) cultivated in urban wastewater in Phnom Penh, Cambodia. Trop. Med. Int. Heal. 12, 73–81
  3. Avnimelech, Y., 2006. Bio-filters: The need for an new comprehensive approach. Aquac. Eng. 34, 172–178
  4. Bond, T., Huang, J., Templeton, M.R., Graham, N., 2011. Occurrence and control of nitrogenous disinfection by-products in drinking water - A review. Water Res. 45, 4341–4354
  5. Boulakradeche, M.O., Akretche, D.E., Cameselle, C., Hamidi, N., 2015. Enhanced Electrokinetic Remediation of Hydrophobic Organics ontaminated Soils by the Combinations of Non-Ionic and Ionic Surfactants. Electrochim. Acta 174, 1057–1066
  6. Chu, W., 2003. Remediation of contaminated soils by surfactant-aided soil washing. Pract. Period. Hazardous, Toxic, Radioact. Waste Manag. 7, 19–24
  7. Darwesh, O.M., Matter, I.A., Eida, M.F., 2019. Development of peroxidase enzyme immobilized magnetic nanoparticles for bioremediation of textile wastewater dye. J. Environ. Chem. Eng. 7
  8. Estabragh, A.R., Lahoori, M., Javadi, A.A., Abdollahi, J., 2019. Effect of a surfactant on enhancing efficiency of the electrokinetic method in removing anthracene from a clay soil. J. Environ. Chem. Eng. 7, 103298
  9. Ferrer, A., Nguyen-Viet, H., Zinsstag, J., 2012. Quantification of diarrhea risk related to wastewater contact in Thailand. Ecohealth 9, 49–59
  10. Huang, Y., Wang, L., Wang, W., Li, T., He, Z., Yang, X., 2019. Current status of agricultural soil pollution by heavy metals in China: A meta-analysis. Sci. Total Environ. 651, 3034–3042
  11. Hube, S., Eskafi, M., Hrafnkelsdóttir, K.F., Bjarnadóttir, B., Bjarnadóttir, M.Á., Axelsdóttir, S., Wu, B., 2020. Direct membrane filtration for wastewater treatment and resource recovery: A review. Sci. Total Environ. 710, 1–22
  12. International Water Association, 2018. Wastewater Report 2018, IWA The International Water Association
  13. Ji, C., Cheng, K., Nayak, D., Pan, G., 2018. Environmental and economic assessment of crop residue competitive utilization for biochar, briquette fuel and combined heat and power generation. J. Clean. Prod. 192, 916–923
  14. Khan, F.I., Husain, T., Hejazi, R., 2004. An overview and analysis of site remediation technologies. J. Environ. Manage. 71, 95–122
  15. Kitis, M., 2004. Disinfection of wastewater with peracetic acid: A review. Environ. Int. 30, 47–55
  16. Landrigan, P.J., Fuller, R., 2015. Global health and environmental pollution. Int. J. Public Health 60, 761–762
  17. Magni, C.A., 2010. Average Internal Rate of Return and Investment Decisions: A New Perspective. Eng. Econ. 55, 37–41
  18. Makino, T., Sugahara, K., Sakurai, Y., Takano, H., Kamiya, T., Sasaki, K., Itou, T., Sekiya, N., 2006. Remediation of cadmium contamination in paddy soils by washing with chemicals: Selection of washing chemicals. Environ. Pollut. 144, 2–10
  19. Murti, G.W., Pertiwi, A., Masfuri, I., Juwita, A.R., Adiprabowo, A.B., Dwimansyah, R., Senda, S.P., Prasetyo, D.H., 2019. Ulasan Teknologi Pretreatment Terkini Limbah Cair POME Sebagai Umpan Digester Biogas. JTERA (Jurnal Teknol. Rekayasa) 4, 17
  20. Naswir, M., Desfaurnatalia, Y., Septiarini, L., Gusti Wibowo, Y., 2019. Activated Bentonite: Low Cost Adsorbent to Reduce Mercury Content in A Solution. Res. J. Appl. Sci. 14, 243–249
  21. Naswir, M., Natalia, D., Arita, S., Wibowo, Y.G., 2020a. Adsorption of Mercury Using Different Types of Activated Bentonite : A Study of Sorption , Kinetics , and Isotherm Models. J. Rekayasa Kim. dan Lingkung. (Journal Chem. Eng. Environ. 15, 123–131
  22. Naswir, M., Rahima, S., Wibowo, Y.G., 2020b. Rubber fruit shell : agricultural waste material as a potential sustainable production for wastewater treatment. In: TALENTA CEST II. IOP Conferense Series: Material Science and Engineering, pp. 1–9
  23. Nzediegwu, C., Prasher, S., Elsayed, E., Dhiman, J., Mawof, A., Patel, R., 2019. Effect of biochar on heavy metal accumulation in potatoes from wastewater irrigation. J. Environ. Manage. 232, 153–164
  24. Ochoa-Herrera, V., Banihani, Q., León, G., Khatri, C., Field, J.A., Sierra-Alvarez, R., 2009. Toxicity of fluoride to microorganisms in biological wastewater treatment systems. Water Res. 43, 3177–3186
  25. Ramadan, B.S., Wulandari, M., Wibowo, Y.G., Ikhlas, N., Nurseta, D.Y., 2021. Removing Ionic and Nonionic Pollutants from Soil, Sludge, and Sediment Using Ultrasound‐Assisted Electrokinetic Treatment. In: Electrokinetic Remediation for Environmental Security and Sustainability
  26. Risco, C., López-Vizcaíno, R., Sáez, C., Yustres, A., Cañizares, P., Navarro, V., Rodrigo, M.A., 2016. Remediation of soils polluted with 2,4-D by electrokinetic soil flushing with facing rows of electrodes: A case study in a pilot plant. Chem. Eng. J. 285, 128–136
  27. Rosanti, D., Wibowo, Y.G., Safri, M., Maryani, A.T., 2020. Bioremediations Technologies on Wastewater Treatment : Opportunities , Challenges and Economic Perspective. Sainmatika J. Ilm. Mat. dan Ilmu Pengetah. Alam 17, 142–156
  28. Rubio, J., Souza, M.L., Smith, R.W., 2002. Overview of flotation as a wastewater treatment technique. Miner. Eng. 15, 139–155
  29. Sasongko, N.A., Agustiani, R., Khotimal, K., 2017. Analisis Biaya Manfaat Berbagai Jenis Teknik Remediasi Air Terproduksi dari Kegiatan Industri Minyak dan Gas Bumi. J. Energi dan Lingkung. 13, 79–86
  30. Suanon, F., Tang, L., Sheng, H., Fu, Y., Xiang, L., Herzberger, A., Jiang, X., Mama, D., Wang, F., 2020. TW80 and GLDA-enhanced oxidation under electrokinetic remediation for aged contaminated-soil: Does it worth? Chem. Eng. J. 385, 123934
  31. Teh, C.Y., Budiman, P.M., Shak, K.P.Y., Wu, T.Y., 2016. Recent Advancement of Coagulation-Flocculation and Its Application in Wastewater Treatment. Ind. Eng. Chem. Res. 55, 4363–4389
  32. Watanabe, Y., Bach, L.T., Van Dinh, P., Prudente, M., Aguja, S., Phay, N., Nakata, H., 2016. Ubiquitous Detection of Artificial Sweeteners and Iodinated X-ray Contrast Media in Aquatic Environmental and Wastewater Treatment Plant Samples from Vietnam, the Philippines, and Myanmar. Arch. Environ. Contam. Toxicol. 70, 671–681
  33. Wibowo, Y.G., Ramadan, B.S., Andriansyah, M., 2019. Simple Technology to Convert Coconut Shell Waste into Biochar; A Green Leap Towards Achieving Environmental Sustainability. J. Presipitasi Media Komun. dan Pengemb. Tek. Lingkung. 16, 58

Last update:

No citation recorded.

Last update: 2024-05-20 10:05:07

No citation recorded.