skip to main content

Effectiveness of Lead and Cadmium Reduction with Adsorption Method using a Combination of Chitosan and Coffee Grounds (Case Study of Industrial Wastewater PT.X Indonesia)

*Nisa Nurhidayanti orcid publons  -  Pelita Bangsa University, Institute of Technology Bandung, Indonesia
Nur Ilman Ilyas  -  Pelita Bangsa University, Indonesia
Dhonny Suwazan  -  Pelita Bangsa University, Indonesia

Citation Format:
Abstract

PT. X Indonesia (PXI) is a company engaged in laboratory services in Bekasi Regency. Based on a preliminary study, the concentration of cadmium and lead in wastewater shows that it exceeds the quality standard of PerMenLHK No. P12 of 2020. The presence of cadmium and lead in PXI's wastewater must be resolved immediately to avoid dangerous human activities and polluting the environment. The research was initiated by taking wastewater samples and synthesizing the adsorbent from the combination of chitosan and activated carbon from coffee grounds. The method used in this study is an experimental approach with quantitative descriptive methods based on laboratory data using FT-IR, SEM EDX and AAS instruments. The results showed that chitosan biosorbent and 1.4-gram coffee grounds activated carbon resulted in the highest cadmium metal reduction efficiency of 94.35% and led to a metal reduction efficiency of 90.86%. The results concluded that the adsorbent of chitosan-activated carbon coffee grounds is very effective in reducing cadmium and lead metals in the wastewater of PXI. This research needs to follow up by increasing the mass of activated carbon of coffee grounds to meet quality standards.

Fulltext View|Download
Keywords: Adsorption; coffee grounds; cadmium; activated carbon; chitosan; lead

Article Metrics:

Article Info
Section: Regional Case Study
Language : EN
  1. Ahsan, A.M,. et al. 2018. Biosorption of bisphenol A and sulfamethoxazole from water using sulfonated coffee waste: Isotherm, kinetic and thermodynamic studies. Journal of Environmental Chemical Engineering 6, 6602–6611
  2. American Public Health Ass0Ciation (APHA). 2017. Electrothermal atomic absorption spectrometric method. Part. 3113 B. Washington, DC
  3. Arifin, Karlina, A. & Khair, A. 2017. Pengaruh dosis kitosan terhadap kadar warna limbah cair home industri sasirangan “ oriens handicraft” landasan ulin. Journal Health Sci. Preven. 1(2):58-67
  4. Ayunda, S., Nurmala,L. & Ramadhana., 2019. Adsorpsi Logam Cd2+ menggunakan bioadsorben berbasis komposit film kitosan - limbah cangkang kopi. Journal Sci. Technology. vol. 17, no. 2, pp. 13–21
  5. Badan Pusat Statistik. 2015. Produksi kopi di indonesia. Badan Pusat Statistik. Jakarta
  6. Badan Standardisasi Nasional. 1995. SNI 06-3730-1995: Arang aktif teknis. Jakarta : Badan Standardisasi Nasional
  7. Badan Standardisasi Nasional. 2008. SNI 6989-59-2008: Metoda pengambilan contoh air limbah. Jakarta : Badan Standardisasi Nasional
  8. Botahala L., 2019. Perbandingan efektivitas daya adsorpsi sekam padi dan cangkang kemiri terhadap logam besi (Fe) pada air sumur gali, cetakan pertama. Yogyakarta. Deepublish
  9. Cherdchoo, W., Nithettham, S. and Charoenpanich, J. 2019. Removal of Cr(VI) from synthetic wastewater by adsorption onto coffee ground and mixed waste tea, Chemosphere, vol. 221, pp. 758–767
  10. Erawati, E., & Helmy, E. R. 2018. Pembuatan karbon aktif dari serbuk gergaji kayu jati (tectona grandis l.f.) suhu dan waktu karbonasi. Urecol (University Research Colloquium). 105–112
  11. Ghafarunnisa, D., Rauf, A., & Rukmana, B. T. S. 2017. Pemanfaatan batubara menjadi karbon aktif dengan proses karbonisasi dan aktivasi menggunakan reagen asam fosfat (H3PO4) dan ammonium bikarbonat (NH4HCO3). Proseding Seminar Nasional XII. 1(1), 36–41
  12. Irmanto, Suyata. 2009. Penurunan kadar amonia, nitrit dan nitrat limbah cair industri tahu menggunakan arang aktif dari ampas kopi. Molekul. 4 No. 2: 105-114
  13. Iqbal, M., Dyah Uly Parwati, Wiwin., Ginting, Chandra. 2018. pengaruh ampas kopi sebagai pupuk organik dan dosis dolomit terhadap pertumbuhan bibit kelapa sawit di pre – nursery. Jurnal Agromast , Vol.3, No.2
  14. Liao, B., Sun, W., Guo, N., Ding, S., Su, S. 2016. Equilibriums and kinetics studies for adsorption of Ni(II) ion on chitosan and its triethylenetetramine derivative. Colloids Surf. Physic0Chem. Eng. Asp. 501, 32–41
  15. Lessa, E. F., Nunes, M. L. and Fajardo, A. R. 2018. Chitosan/waste coffee-grounds composite: an efficient and eco-friendly adsorbent for removal of pharmaceutical contaminants from water, Carbohydrate Polymer, vol. 189, pp. 257–266
  16. Menteri Lingkungan Hidup dan Kehutanan (LHK). 2020. Peraturan menteri lingkungan hidup dan kehutanan nomor P12 Tahun 2020 tentang penyimpanan limbah bahan berbahaya dan beracun. Jakarta
  17. Mohamed, M.A., Jaafar,J., Ismail, A.F., Othman, M.H.D. & Rahman, M.A. 2017. Chapter 1 - fourier transform infrared (FTIR) spectroscopy. Membrane Characterization 2017, 3-29
  18. Mosivand, S., Kazeminezhad,I. & Fathabad, S.P. 2019. Easy, fast, and efficient removal of heavy metals from laboratory and real wastewater using electr0Crystalized iron nanostructures. Micr0Chemical Journal. 146. 534-543
  19. Naushad, M., Ahamad, T., Al-Maswari, B.M., Alqadami, A.A., Alshehri, S.M. 2017. Nickel ferrite bearing nitrogen-doped mesoporous carbon as efficient adsorbent for the removal of highly toxic metal ion from aqueous medium,Chem.Eng.J.330, 1351–1360
  20. Nurhidayanti, N., & Ardiatma, D. 2020. efektivitas hidroponik tanaman bunga kana, kayu apu serta ampas kopi dalam pengoiahan air limbah greywater domestik. JurnaI Presipitasi: Media Komunikasi dan Pengembangan Teknik Lingkungan, 17(3), 272-283
  21. Obaid, S.S., Gaikwad, D.K., Sayyed, M.I., AL-Rashdi,K. & Pawar, P.P. 2018. Heavy metal ions removal from waste water by the natural zeolites, Material Today 5, 17930–17934
  22. Park, M. H. Et al. 2019. Removal of aqueous-phase Pb(II), Cd(II), As(III), and As(V) by nanoscale zero-valent iron supported on exhausted coffee grounds, Waste Management, vol. 92, pp. 49–58
  23. Panigrahi, T., Santhoskumar, A. U. 2020. Adsorption pr0cess for reducing heavy metals in Textile Industrial Effluent with low cost adsorbents, Prog. Chem. Bi0Chem. Res. 2020, 3(2), 135-139
  24. Pietrelli, L. Et al. 2020. Chromium(III) removal from wastewater by chitosan flakes. Applied Science, 10, 1925
  25. Pranoto, P.,Martini, T., & Maharditya, W. 2020. Uji efektivitas dan karakterisasi komposit tanah andisol/arang tempurung kelapa untuk adsorpsi logam berat besi (Fe). ALCHEMY Jurnal Penelitian Kimia, Vol 16 (1), 50-66
  26. Prathna, T.C. et al., 2018 Nanoparticles in household level water treatment: an overview, Sep. Purif. Technol. 199, 260–270
  27. Pratiwi, R., Prinajati, D.P.S. 2018. Adsorption for lead removal by chitosan from shrimp shells.Indonesian Journal of Urban and Environmental Technology. 2(1): 35-46
  28. Rahardjo, P. 2012. Panduan budidaya dan pengolahan kopi arabika dan robusta. Penebar Swadaya, Jakarta
  29. Rengganis, A., P., Yulianto, A., Yulianti. 2017. Pengaruh variasi konsentrasi arang ampas kopi terhadap sifat fisika tinta spidol whiteboard. Jurnal MIPA 40(2) : 92 – 96
  30. Rodriguez et al., 2017. Adsorption Of Ni(II) On Spent Coffee And Coffee Husk Based Activated Carbon. Enviromental Chemical Engineering. Vol 6 : 1161 – 1170
  31. Rodrigues, F.H.A. et al. 2019. Hydrogel composites containing nan0Cellulose as adsorbents for aqueous removal of heavy metals: design, optimization, and application. Cellulose 26, 9119–9133
  32. Sahu, N., Saigh,J. & Koduru, J.R. 2021. Removal of arsenic from aqueous solution by novel iron and iron–zirconium modified activated carbon derived from chemical carbonization of Tectona grandis sawdust: Isotherm, kinetic, thermodynamic and breakthrough curve modelling. Environmental Research 200, 111431
  33. Sari, Fitri Purnama. 2019. Pembuatan dan karakterisasi kitosan-karbon aktif dari ampas kopi sebagai adsorben untuk menurunkan kadar logam kadmium dan nikel. Tesis. Universitas Sumatera Utara
  34. Sembiring, M. T. dan T. S. Sinaga. 2003. Arang aktif (pengenalan dan proses pembuatannya). USU Digital Library. Sumatra Utara
  35. Seyedmohammadi, et al. 2016. Application of nan0chitosan and chitosan particles for adsorption of Zn(II) ions pollutant from aqueous solution to protect environment. Model. Earth Syst. Environ. 2, 165
  36. Sharma, V., and Bhardwaj, A. 2019. Scanning electron microscopy (SEM) in food quality evaluation. Evaluation Technologies for Food Quality. Woodhead Publishing Series in Food Science, Technology and Nutrition, New Delhi, India, pp. 743–761
  37. Solihat, I., Setyowati, A. D., Pamulang, D. U. 2021. Penggunaan limbah kulit singkong pada filter air sederhana skala rumah tangga. Jurnal Ilmiah Teknik Kimia. 5(1), 61–70
  38. Supriyantini, et al. 2018. Pemanfaatan chitosan dari limbah cangkang rajungan (portunus pelagicus) sebagai Adsorben Logam Timbal (Pb). Jurnal Kelautan Tropis. ISSN 0853-7291. Vol. 21(1):23-28
  39. Suwazan, D., & Nurhidayanti, N. 2022. Efektivitas kombinasi kitosan dan ampas teh sebagai adsorben alami dalam menurunkan konsentrasi timbal pada limbah cair PT PXI. Jurnal Ilmu Lingkungan, 20(1), 37-44
  40. Velusamy S., Roy , A., Sundaram, S., Mallick, T.K. 2021. A Review on heavy metal ions and containing dyes removal through graphene oxide-based adsorption strategies for textile wastewater treatment. The Chemical Record, Vol 21, Issue 7, p. 1570-1610
  41. Wardani, S., & Rosa, E. 2018. potensi limbah tulang kambing sebagai arang aktif yang teraktivasi asam sulfat. Jurnal Serambi Engineering, 3(2), 308–315
  42. Yurdakal, S., et al. 2019. Phot0Catalyst characterization techniques: adsorption isotherms and BET, SEM, FTIR, UV–Vis, photoluminescence, and electr0Chemical characterizations. In: Marcì, G., Palmisano, L. (Eds.), Heterogeneous Phot0Catalysis: Relationships With Heterogeneous Catalysis and Perspectives. Joseph P. Hayton, Palermo, Italy, pp. 87–152

Last update:

No citation recorded.

Last update: 2024-12-26 08:10:39

No citation recorded.