skip to main content

Preliminary Study of Actinomycetes as Potential Biocatalyst in Biodiesel Production Through Microbial Lipase Activity

*Aidha Zulaika  -  Binawan University,, Indonesia
Sari Sekar Ningrum  -  Binawan University, Indonesia
Dody Guntama  -  Jayabaya University, Indonesia

Citation Format:
Abstract

Biocatalysts are biological substances that act as an accelerator of chemical reactions without causing influence on the living organism chemically. Biocatalysts based on renewable sources, biodegradable, tolerance to pH and temperature, and high selectivity to stereochemistry substrates and products. The utilization of biocatalyst is environmentally friendly and effective in production costs. This research aimed to determine the potential of actinomycetes as a biocatalyst in biodiesel production. This research method isolation and identification of actinomycetes isolates, conducting lipase activity test to determining lipase enzyme production of actinomycetes isolates. The data analysis in microbial identification was conducted by molecular identification by Gene bank through Basic Local Alignment Search Tool (BLAST). The lipase activity of actinomycetes analyzing by the value of lipase rate of test microbes. Based on chemical analysis of lipase activity, this research results show that actinomycetes T1A has the highest lipase activity by 14.4640 mU/g. Based on molecular identification analysis, actinomycetes T1A was identified as Streptomyces sp., 99% similar to Streptomyces phaeochromogenes

Fulltext View|Download
Keywords: Biocatalyst; biodiesel; lipase; streptomyces phaeochromogenes; BLAST
Funding: Ristek-BRIN

Article Metrics:

  1. Aguieiras, E.C.G., D.S. Ribeiro, P.P. Couteiro, C.M.B. Bastos, D.S. de Queiroz, J.M. Parreira, M.A.P. Langone. 2016. Investigation of the reuse of immobilized lipases in biodiesel synthesis: influence of different solvents in lipase activity. Applied Biochemistry and Biotechnology. 179, pages 485–496
  2. Andualema, B., & A. Gessesse. 2012. Microbial lipases and their industrial application: review. Biotechnology, 11 (3): 100-118
  3. Anteneh, Y.S., and C.M.M. Franco. 2019. Whole cell actinobacteria as biocatalysts. frontiers in microbiology, 10:(77)
  4. Anwar, S., B. Ali, I, Sajid. 2016. Screening of rhizospheric actinomycetes for various in-vitro and in-vivo plant growth promoting (PGP) traits and for agroactive compounds. Frontiers in Microbiology, 7: 1334
  5. Apsari, P.P., S. Budiarti, A.T. Wahyudi. 2019. Actinomycetes of rhizosphere soil producing antibacterial compounds against urinary tract infection bacteria. Biodiversitas Journal of Biological Diversity, 20 (5): 1259-1265
  6. Arifuzzaman, M., M.R. Khatun, H. Rahman. 2010. Isolation and screening of actinomycetes from sundarbans soil for antibacterial activity. African Journal of Biotechnology, 9(29): 4615–4619
  7. Ayaz, B., A. Ugur, R. Boran. 2015. Purification and characterization of organic solvent-tolerant lipase from Streptomyces sp. OC119-7 for biodiesel production. Biocatalysis and Agricultural Biotechnology 4(1): 103-108
  8. Baliyarsingh, B., S.K. Nayak, B.B. Mishra. 2017. Soil microbial diversity: an eco physiological study and role in plant productivity. In K.U. Adhya T., B. Mishra, K. Annapurna, D. Verma. (Ed.), Advances in Soil Microbiology: Recent Trends and Future Prospects. Microorganisms for Sustainability. Springer
  9. Barka, E. A., P. Vatsa, L. Sanchez, N. Gaveau-Vaillant, C. Jacquard, J.P. Meier-Kolthoff, et al., 2015. Taxonomy, physiology, and natural products of actinobacteria. Microbiology and Molecular Biology Reviews, 80: 1–43
  10. Bazinet, A. L., B. D. Ondov, D.D. Sommer, S. Ratnayake. 2018. BLAST-based validation of metagenomic sequence assignments, 6: 4892
  11. Bezerra, J. D. P., Azevedo, J. L. de, C. M. Souza-Motta. 2017. Why study endophytic fungal community associated with cacti species?. Diversity and Benefits of Microorganisms from the Tropics, 21–35
  12. Casas-Godoy, L., F. Gasteazoro, S. Duquesne, F. Bordes, A. Marty, and G. Sandoval. 2018. Lipases: an overview. Georgina Sandoval (ed.), Lipases and Phospholipases: Methods and Protocols. Methods in Molecular Biology, vol. 1835
  13. Chandra, P., Enespa, R.Singh, P.K. Arora. 2020. Microbial lipases and their industrial applications: a comprehensive review. Microbial Cell Factories. 19(169)
  14. Chasanah, E., N.M. Noor, Y. Risjani, A.S. Dewi. 2012. Antibacterial and antiocsidan activity extract of streptomyces sp. and exserohilum rostratum cultivated to three growth Medium. Jurnal Pascapanen dan Bioteknologi Kelautan dan Perikanan. 7(1)
  15. Chen, H.C, H.Y Ju, T.T Wu, Y.C Liu, C.C Lee, C. Chang, Y.L Chung, C.J Shieh. 2011. Continuous production of lipase-catalyzed biodiesel in a packed-bed reactor: optimization and enzyme reuse study. Hindawi Publishing Corporation Journal of Biomedicine and Biotechnology
  16. Cho, S.S., D.J. Park, J.R. Simkhada, J.H. Hong, J.K. Sohng, O.H. Lee, J.C. Yoo. 2012. A neutral lipase applicable in biodiesel production from a newly isolated Streptomyces sp. CS326. Bioprocess and Biosystems Engineering. 35(1-2): 227-34
  17. de Carvalho, C. C. 2017. Whole cell biocatalysts: essential workers from Nature to the industry. Microbial Biotechnology. 10: 250–263
  18. De Lyra, M.D.C.C.P., R.G. Taketani, A.D. De Freitas, C.E.R.S.E. Silva, A.C.E.S. Mergulhão, M.L.R.B. Da Silva, J.E.L.S. Antunes, A.S.F. De Araújo, P.F. Giachetto. 2021. Structure and diversity of bacterial community in semiarid soils cultivated with prickly-pear cactus (Opuntia ficus-indica (l.) mill.). Anais Da Academia Brasileira de Ciencias, 93(3): 1–9
  19. El-Sheekh, M.M., N.G. Allam, S.A. Shabana, M.M. Azab. 2017. Efficiency of lipid accumulating Actinomycetes isolated from soil for biodiesel production: Comparative study with microalgae. Taylor, Francis online. 39(9)
  20. Fathurrahman, A.T. 2019. Actinobacteria: potential novel source of biocatalyst. BioTrends, 10(1)
  21. Fonseca-García, C., D. Coleman-Derr, E. Garrido, A. Visel, S.G. Tringe, L.P. Partida-Martínez. 2016. The Cacti microbiome: interplay between habitat-filtering and host-specificity. Frontiers in Microbiology, 7
  22. Fukuda, H., S. Hama, S. Tamalampudi, H. Noda. 2008. Whole-cell biocatalysts for biodiesel fuel production. Trends in Biotechnology, 26(12)
  23. Guldhe, A., B. Signgh, T. Mutanda, K. Permaul, F. Bux. 2015. Advances in synthesis of biodiesel via enzyme catalysis: novel and sustainable approaches. Renewable and Sustainable Energy Reviews 41(2015): 1447–1464
  24. Gog, A., M. Roman, M. Tosa, C. Paizs, F.D. Irimie. 2012. Biodiesel production using enzymatic transesterification current state and perspectives. Renewable Energy, 39: (10-16)
  25. Hama, S., H. Noda, A. Kondo. 2018. How lipase technology contributes to evolution of biodiesel production using multiple feedstocks. Current Opinion in Biotechnology. 50:57–64
  26. Jemli, S., D. Ayadi-Zouari, H.B. Hlima, S. Bejar. 2016. Biocatalysts: application and engineering for industrial purposes, critical reviews in biotechnology, 36 (2): 246–58
  27. Karray, F., M. Gargouri, A. Chebaane, N. Mhiri, A. Mliki, S. Sayadi. 2020. Climatic aridity gradient modulates the diversity of the rhizosphere and endosphere bacterial microbiomes of opuntia ficus-indica. Frontiers in Microbiology
  28. Krismawati, H., L. Sembiring, S. Wahyuono. 2015. Sreptomycetes producing antibiotic associated with rhizospher some mangrove species. PLASMA, 1(2): 59-70
  29. Ladunga, I. 2017. Finding similar nucleotide sequences using network BLAST searches. current protocols in bioinformatics, 58: 3.3.1–3.3.25
  30. Lan, D., M. Qu, B. Yang, Y. Wang. 2016. Enhancing production of lipase MAS1 from marine streptomyces sp. strain in pichia pastoris by chaperones co-expression. Electronic Journal of Biotechnology, 22:62-67
  31. Lee, J.H., S.B Kim, C. Park, B. Tae, S.O Han, S.W Kim. 2010. Development of batch and continuous processes on biodiesel production in a packed-bed reactor by a mixture of immobilized candida rugose and rhizopus oryzae lipases. Applied Biochemistry and Biotechnology, 161:365–371
  32. Lenfant, N., T. Hotelier, E. Velluet, Y. Bourne, P. Marchot, A. Chatonnet. 2013. ESTHER, the database of the α/β-hydrolase fold superfamily of proteins: tools to explore diversity of functions. Nucleic Acids Research, 41 (D1):423–429
  33. Luna, C., D. Luna, J. Calero, F.M. Bautista, A.A Romero, A. Posadillo, C. Verdugo-Escamilla. 2016. Biochemical catalytic production of biodiesel. Handbook of Biofuels Production, 165–199
  34. Michael Janda, J., and S.L. Abbott. 2019. 16S rrna gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. Journals of Clinical Microbiology, 45(9)
  35. Mukhtar, S., A. Zaheer, D. Aiysha, K. Malik, S. Mehnaz. 2017. Actinomycetes: a source of industrially important enzymes. Journal of Proteomics and Bioinformatics. 10: 316–319
  36. Muleta, A., and F. Assefa. 2018. Isolation and screening of antibiotic producing actinomycetes from rhizosphere and agricultural soils. African Journal of Biotechnology, 17(22): 700-714,
  37. Nessner Kavamura, V.,, R.G. Taketani, M.D. Lançoni, F.D. Andreote, R. Mendes, I.S. de Melo. 2013. Water regime influences bulk soil and rhizosphere of cereus jamacaru bacterial communities in the brazilian caatinga biome. PLoS ONE 8(9): e73606
  38. Nguyen, H.C., S.H. Liang, T.T Doan, C.H. Su, P.C. Yang. 2017. Lipase-catalyzed synthesis of biodiesel from black soldier fly (hermetica illucens): optimization by using response surface methodology. Energy Conversion and Management Elsevier, 145: 335–42
  39. Nuzulia, N.U., Mustofa, J. Widada. Anticancer potential of secondary metabolite of streptomyces sp. GMY01 on breast cell cancer line T47D dan MCF-7. Thesis. Biotechnology. Universitas Gajah Mada
  40. Palilingan, S.C. 2013. Optimization of diasilgliserol enzymatic production of CPO by continuously system. [Thesis]. Bogor (ID): Sekolah Pasca Sarjana. Institut Pertanian Bogor
  41. Ondul, E., N. Dizge, B. Keskinler, and N. Albayrak. 2015. Biocatalytic production of biodiesel from vegetable oils. Biofuels - Status and Perspective. Chapter 2
  42. Rahayu, Triastuti. 2011. Streptomyces as new source of antibiotic in indonesia. Proceeding Biology Education Conference. 8(1)
  43. Rizwanul Fattah, I.M., H.C. Ong, T.M.I. Mahlia, M. Mofijur, A.S. Silitonga, S.M. Ashrafur Rahman, A. Ahmad. 2020. State of the art of catalysts for biodiesel production. Frontiers in Energy Research. 8: 101
  44. Saraswati, R., E. Husen, R.D.M. Simanungkali. 2007. Biology soil analysis method. Center for Agricultural Land Resource Research and Development
  45. Sasso, F., A. Natalello, S. Castoldi S, M. Lotti, C. Santambrogio, R. Grandori. 2016. Burkholderia cepacia lipase is a promising biocatalyst for biofuel production. Biotechnology Journal, 11: 954-960
  46. Sharma, A., Shadiya, R. Kumar, K. Meena, S.S. Kanwar, T. Sharma. 2019. Biodiesel and the potential role of microbial lipases in its production. p. k. arora (ed.). Microbial Technology for the Welfare of Society. Microorganisms for Sustainability. 17
  47. Saefulhak, Y., T. Mumpuni, F. Tumiwa. 2017. Renewable energy; energy for now and later. Strategic Parthership for Green and Inclusive Energy. Institute for Essentials Service Reform
  48. Susilawati, Mustoyo, E. Budhisurya, R.C.W. Anggono, B.H. Simanjuntak. 2013. Analysis of soil fertility with soil microorganism indicator on land use systems in dieng plateau. AGRIC; Journal of Agricultural Science, 25(1): 64–72
  49. Prakash, D., N. Nawani, M. Prakash, M. Bodas, A. Mandal, M. Khetmalas, B. Kapadnis. 2013. Actinomycetes: A repertory of green catalysts with a potential revenue resource. BioMed Research International, Article ID 264020, 8 pages
  50. Tri-Panji, F. Dimawarnita, I. Kresnawaty, S. Saadah, T. Aminingsih, M. Miranti. 2019. Enzymatic glicerolysis of CPO using immobilized lipase for production of diacyl- and monoacyl glycerol. Menara Perkebunan 87(1): 11-19
  51. Ugur, A., N. Sarac, R. Boran, B. Ayaz, O. Ceylan, G. Okmen. 2014. New lipase for biodiesel production: partial purification and characterization of LipSB 25-4. International Scholarly Research Notices, Article ID 289749, 7 pages, 2014
  52. Vaijayanthi, G., R. Vijayakumar, D. Dhanasekaran. 2016. Actinobacteria — a biofactory of novel enzymes. Chapter 14. intechopen.49267
  53. Vargas, M., X. Niehus, L. Casas-Godoy, G. Sandoval. 2018. Lipases as biocatalyst for biodiesel production. Chapter 21. Georgina Sandoval (ed.), Lipases and phospholipases: methods and protocols, methods in molecular biology. vol. 1835,
  54. Wahyuningsih, E. Edy Supriyo, R.T.D. Wisnu Broto, 2015. Biocatalyst lipase rhizopus oryzae in transesterification reactions structured lipids rich in omega-3 fatty acids. METANA: Process Engineering Communication Media and Appropriate Technology, 11(2): 7 – 12
  55. Wang, X., X. Qin, D. Li, B. Yang, Y. Wang. 2017. One-step synthesis of high-yield biodiesel from waste cooking oils by a novel and highly methanol-tolerant immobilized lipase. Bioresource Technology, 235: 18-24
  56. Wijayanti, D.R, A. Zulaika, W.F. Safari. 2020. Isolation of actinomycetes with antimicrobial activity from succulent plant rhizosphere. Research Report. Binawan University
  57. Xiao, M., C. Qi, J.P. Obbard. 2011. Biodiesel production using aspergillus niger as a wholecell biocatalyst in a packed-bed reactor. Bioenergy. 3(4): 293–298
  58. Yuan, D., D. Lan, R. Xin, B. Yang, Y. Wang. 2016. Screening and characterization of a thermostable lipase from marine Streptomyces sp. strain W007. Biotechnology and Applied Biochemistry, 63: 41-50
  59. Zanane, C., H. Latrache, K. Elfazazi, H. Zahir, M. Ellouali. 2018. Isolation of actinomycetes from different soils of Beni Amir Morocco. Journal of Materials and Environmental Sciences, 2508(10): 2994–3000
  60. Zheng, L., Y. Hou, W. Li, S. Yang, Q. Li, Z. Yu. 2012. Biodiesel production from rice straw and restaurant waste employing black soldier fly assisted by microbes. Energy, 47: 225–9
  61. Zheng, L., Q. Li, J. Zhang, Z. Yu. 2012. Double the biodiesel yield: rearing black soldier fly larvae, hermetia illucens, on solid residual fraction of restaurant waste after grease extraction for biodiesel production. Renewable Energy 41: 75–9
  62. Zulaika, A., D.R. Wijayanti, W.F. Safari. 2o21. A preliminary study of soil microbial abundance in succulent plant rhizospheres. Biota: Biology and Biology Education, 14(1): 14-22

Last update:

  1. Exploring microbial lipases: Screening and identification for biocatalyst potential in bioethanol synthesis from glycerol-based biodiesel waste

    Aidha Zulaika, Herliati Rahman, Sari Sekar Ningrum, Aliffia Fita Maulida. Results in Engineering, 23 , 2024. doi: 10.1016/j.rineng.2024.102427

Last update: 2024-09-18 21:44:26

No citation recorded.