skip to main content

A Critical Review of Acid Mine Drainage Treatment

*Yudha Gusti Wibowo orcid scopus publons  -  Institut Teknologi Sumatera, Indonesia
Rahmat Fadhilah  -  Institut Teknologi Sumatera, Indonesia
Hutwan Syarifuddin  -  Universitas Jambi, Indonesia
Anis Tatik Maryani  -  Universitas Jambi, Indonesia
Intan Andriani Putri  -  Institut Teknologi Sumatera, Indonesia

Citation Format:
Abstract

Acid mine drainage has been reported to cause various environmental and human health problems. Acid mine drainage is formed due to the oxidation of sulfide minerals to water and air. This paper reports the efforts that have been made in the management and treatment of acid mine drainage. Thirty papers from reputable publishers are used as references. Efforts to prevent the formation of acid mine drainage can be made by making proper drainage and dewatering systems, making non-acid formations for rocks that have the potential to be oxidized. Active and passive treatment methods can be used to treat acid mine drainage. The active treatment method uses materials and chemicals to reduce pollutant parameters, while the passive method utilizes natural processes to reduce pollutant parameters in acid mine drainage. The combination of active and passive methods using novel materials that have been researched is recommended to produce the best system that can thoroughly remove pollutants in acid mine drainage.

Fulltext View|Download
Keywords: Acid mine drainage; acid mine drainage treatment; active treatment; passive treatment

Article Metrics:

  1. Alegbe, M. J., Ayanda, O. S., Ndungu, P., Nechaev, A., Fatoba, O. O., & Petrik, L. F. (2019). Physicochemical characteristics of acid mine drainage, simultaneous remediation and use as feedstock for value added products. Journal of Environmental Chemical Engineering, 7(3). https://doi.org/10.1016/j.jece.2019.103097
  2. Aznar-Sánchez, J. A., García-Gómez, J. J., Velasco-Muñoz, J. F., & Carretero-Gómez, A. (2018). Mining waste and its sustainable management: Advances in worldwide research. Minerals, 8(7). https://doi.org/10.3390/min8070284
  3. Bwapwa, J. K., Jaiyeola, A. T., & Chetty, R. (2017). Bioremediation of acid mine drainage using algae strains : A review. South African Journal of Chemical Engineering, 24(April), 62–70. https://doi.org/10.1016/j.sajce.2017.06.005
  4. Casiot, C., Egal, M., Elbaz-Poulichet, F., Bruneel, O., Bancon-Montigny, C., Cordier, M. A., Gomez, E., & Aliaume, C. (2009). Hydrological and geochemical control of metals and arsenic in a Mediterranean river contaminated by acid mine drainage (the Amous River, France); preliminary assessment of impacts on fish (Leuciscus cephalus). Applied Geochemistry, 24(5), 787–799. https://doi.org/10.1016/j.apgeochem.2009.01.006
  5. Chen, J., Li, X., Jia, W., Shen, S., Deng, S., Ji, B., & Chang, J. (2021). Promotion of bioremediation performance in constructed wetland microcosms for acid mine drainage treatment by using organic substrates and supplementing domestic wastewater and plant litter broth. Journal of Hazardous Materials, 404, 124125. https://doi.org/10.1016/j.jhazmat.2020.124125
  6. Demchak, J., Morrow, T., & Skousen, J. (2001). Treatment of acid mine drainage by four vertical flow wetlands in Pennsylvania. Geochemistry: Exploration, Environment, Analysis, 1(1), 71–80. https://doi.org/10.1144/geochem.1.1.71
  7. Genty, T., Bussière, B., Potvin, R., Benzaazoua, M., & Zagury, G. J. (2012). Dissolution of calcitic marble and dolomitic rock in high iron concentrated acid mine drainage: Application to anoxic limestone drains. Environmental Earth Sciences, 66(8), 2387–2401. https://doi.org/10.1007/s12665-011-1464-3
  8. Gibert, O., Cortina, J. L., de Pablo, J., & Ayora, C. (2013). Performance of a field-scale permeable reactive barrier based on organic substrate and zero-valent iron for in situ remediation of acid mine drainage. Environmental Science and Pollution Research, 20(11), 7854–7862
  9. https://doi.org/10.1007/s11356-013-1507-2
  10. Järup, L. (2003). Hazards of heavy metal contamination. In British Medical Bulletin. https://doi.org/10.1093/bmb/ldg032
  11. Kadirvelu, K., Kavipriya, M., Karthika, C., Vennilamani, N., & Pattabhi, S. (2004). Mercury (II) adsorption by activated carbon made from sago waste. Carbon, 42(4), 745–752. https://doi.org/10.1016/j.carbon.2003.12.089
  12. Kefeni, K. K., Msagati, T. A. M., & Mamba, B. B. (2017). Acid mine drainage: Prevention, treatment options, and resource recovery: A review. Journal of Cleaner Production, 151, 475–493. https://doi.org/10.1016/j.jclepro.2017.03.082
  13. Kim, J. Y., Lee, B. T., Shin, K. H., Lee, K. Y., Kim, K. W., An, K. G., Park, Y. S., Kim, J. Y., & Kwon, Y. H. (2007). Ecological health assessment and remediation of the stream impacted by acid mine drainage of the Gwangyang mine area. Environmental Monitoring and Assessment, 129(1–3), 79–85. https://doi.org/10.1007/s10661-006-9429-9
  14. Kumari, S., Amit, Jamwal, R., Mishra, N., & Singh, D. K. (2020). Recent developments in environmental mercury bioremediation and its toxicity: A review. Environmental Nanotechnology, Monitoring and Management, 13, 100283. https://doi.org/10.1016/j.enmm.2020.100283
  15. Lasindrang, M., Suwarno, H., Tandjung, S. D., & Kamiso, H. N. (2015). Adsorption Pollution Leather Tanning Industry Wastewater by Chitosan Coated Coconut Shell Active Charcoal. Agriculture and Agricultural Science Procedia. https://doi.org/10.1016/j.aaspro.2015.01.047
  16. Lasut, M. T., & Yasuda, Y. (2010). Distribution and Accumulation of Mercury Derived from Gold Mining in Marine Environment and Its Impact on Residents of Buyat Bay , North Sulawesi , Indonesia. Water Air Soil Pollution, 208, 153–164. https://doi.org/10.1007/s11270-009-0155-0
  17. Lewis, A. E. (2010). Review of metal sulphide precipitation. Hydrometallurgy, 104(2), 222–234. https://doi.org/10.1016/j.hydromet.2010.06.010
  18. Liao, J., Wen, Z., Ru, X., Chen, J., Wu, H., & Wei, C. (2016). Distribution and migration of heavy metals in soil and crops affected by acid mine drainage: Public health implications in Guangdong Province, China. Ecotoxicology and Environmental Safety, 124, 460–469. https://doi.org/10.1016/j.ecoenv.2015.11.023
  19. Luís, A. T., Teixeira, P., Almeida, S. F. P., Ector, L., Matos, J. X., & Ferreira Da Silva, E. A. (2009). Impact of acid mine drainage (AMD) on water quality, stream sediments and periphytic diatom communities in the surrounding streams of aljustrel mining area (Portugal). Water, Air, and Soil Pollution, 200(1–4), 147–167. https://doi.org/10.1007/s11270-008-9900-z
  20. Matlock, M. M., Howerton, B. S., & Atwood, D. A. (2002). Chemical precipitation of heavy metals from acid mine drainage. Water Research, 36(19), 4757–4764. https://doi.org/10.1016/S0043-1354(02)00149-5
  21. Mosley, L. M., Willson, P., Hamilton, B., Butler, G., & Seaman, R. (2015). The capacity of biochar made from common reeds to neutralise pH and remove dissolved metals in acid drainage. Environmental Science and Pollution Research, 22(19), 15113–15122. https://doi.org/10.1007/s11356-015-4735-9
  22. Motsi, T., Rowson, N. A., & Simmons, M. J. H. (2009). Adsorption of heavy metals from acid mine drainage by natural zeolite. International Journal of Mineral Processing, 92(1–2), 42–48. https://doi.org/10.1016/j.minpro.2009.02.005
  23. Naidoo, S. (2015). An assessment of the impacts of acid mine drainage on socio-economic development in the Witwatersrand: South Africa. Environment, Development and Sustainability, 17(5), 1045–1063. https://doi.org/10.1007/s10668-014-9589-7
  24. Nasir, S., Ibrahim, E., & Arief, A. T. (2013). Pendahuluan Air Asam Tambang dan Pengolahannya Sand Filter , Ultrafiltrasi dan Reverse Osmosis. 193–200
  25. Neculita, C.-M., Zagury, G. J., & Bussière, B. (2007). Passive Treatment of Acid Mine Drainage in Bioreactors using Sulfate-Reducing Bacteria. Journal of Environmental Quality, 36(1), 1–16. https://doi.org/10.2134/jeq2006.0066
  26. Núñez-Gómez, D., Rodrigues, C., Lapolli, F. R., & Lobo-Recio, M. Á. (2019). Adsorption of heavy metals from coal acid mine drainage by shrimp shell waste: Isotherm and continuous-flow studies. Journal of Environmental Chemical Engineering, 7(1). https://doi.org/10.1016/j.jece.2018.11.032
  27. Poedjiratrajoe, E. (2012). UPAYA PENURUNAN KADAR LOGAM BERAT ARSEN(As) YANG BERASAL DARI AIR REMBESAN WASTE ROCK TAMBANG PT. NEWMONT MINAHASA RAYA MELALUI METODE FITOREMEDIASI. Prosiding Seminar Air Asam Tambang Di Indonesia Ke 4, 39–46
  28. Qureshi, A., Maurice, C., & Öhlander, B. (2016). Potential of coal mine waste rock for generating acid mine drainage. Journal of Geochemical Exploration, 160, 44–54. https://doi.org/10.1016/j.gexplo.2015.10.014
  29. Rakotonimaro, T. V., Neculita, C. M., Bussière, B., Benzaazoua, M., & Zagury, G. J. (2017). Recovery and reuse of sludge from active and passive treatment of mine drainage-impacted waters: a review. Environmental Science and Pollution Research, 24(1), 73–91. https://doi.org/10.1007/s11356-016-7733-7
  30. Rambabu, K., Banat, F., Pham, Q. M., Ho, S.-H., Ren, N.-Q., & Show, P. L. (2020). Biological remediation of acid mine drainage: Review of past trends and current outlook. Environmental Science and Ecotechnology, 2, 100024. https://doi.org/10.1016/j.ese.2020.100024
  31. Rosanti, D., Wibowo, Y. G., Safri, M., & Maryani, A. T. (2020). Bioremediations Technologies on Wastewater Treatment : Opportunities , Challenges and Economic Perspective. Sainmatika: Jurnal Ilmiah Matematika Dan Ilmu Pengetahuan Alam, 17(2), 142–156. https://doi.org/10.31851/sainmatika.v17i2.5085
  32. Rosli, M. A., Daud, Z., Latiff, A. A. A., Rahman, S. E. A., Oyekanmi, A. A., Zainorabidin, A., Awang, H., & Halim, A. A. (2017). The effectiveness of Peat-AC composite adsorbent in removing color and Fe from landfill leachate. International Journal of Integrated Engineering, 9(3), 35–38
  33. RoyChowdhury, A., Sarkar, D., & Datta, R. (2015). Remediation of Acid Mine Drainage-Impacted Water. Current Pollution Reports, 1(3), 131–141. https://doi.org/10.1007/s40726-015-0011-3
  34. Sabina, R. O., Santos, E. S., & Abreu, M. M. (2019). Accumulation of Mn and Fe in aromatic plant species from the abandoned Rosalgar Mine and their potential risk to human health. Applied Geochemistry, 104, 42–50. https://doi.org/10.1016/j.apgeochem.2019.03.013
  35. Said, N. I. (2014). TEKNOLOGI PENGOLAHAN AIR ASAM TAMBANG BATUBARA “ Alternatif Pemilihan Teknologi .” JAI, 7(2), 119–138
  36. Sari, D. K., Kusniawati, E., & Srimardani, R. (2020). Peningkatan Kualitas Air Asam Tambang Menggunakan Zeolit Dan Bakteri Sebagai Media Adsorpsi Dengan Metode Sedimentasi Secara Anaerob Di Pt Bukit Asam, Tbk. Tanjung Enim, Sumatera Selatan. Jurnal Teknik Patra Akademika, 11(1), 1–9
  37. Sharma, S., & Malaviya, P. (2016). Bioremediation of tannery wastewater by chromium resistant novel fungal consortium. Ecological Engineering, 91, 419–425. https://doi.org/10.1016/j.ecoleng.2016.03.005
  38. Sheoran, A. S., & Sheoran, V. (2006). Heavy metal removal mechanism of acid mine drainage in wetlands: A critical review. Minerals Engineering, 19(2), 105–116. https://doi.org/10.1016/j.mineng.2005.08.006
  39. Skousen, J. G., Ziemkiewicz, P. F., & McDonald, L. M. (2019). Acid mine drainage formation, control and treatment: Approaches and strategies. Extractive Industries and Society, 6(1), 241–249. https://doi.org/10.1016/j.exis.2018.09.008
  40. Skousen, J., Zipper, C. E., Rose, A., Ziemkiewicz, P. F., Nairn, R., McDonald, L. M., & Kleinmann, R. L. (2017). Review of Passive Systems for Acid Mine Drainage Treatment. Mine Water and the Environment, 36(1), 133–153. https://doi.org/10.1007/s10230-016-0417-1
  41. Swenson, H., & Stadie, N. P. (2019). Langmuir’s Theory of Adsorption: A Centennial Review [Review-article]. Langmuir, 35, 5409–5426. https://doi.org/10.1021/acs.langmuir.9b00154
  42. Tabelin, C. B., Seno, K., Hiroyoshi, N., Ito, M., Li, X., Park, I., & Jeon, S. (2018). A review of recent strategies for acid mine drainage prevention and mine tailings recycling. Chemosphere, 219, 588–606. https://doi.org/10.1016/j.chemosphere.2018.11.053
  43. To, T. B., Nordstrom, D. K., Cunningham, K. M., Ball, J. W., & Mccleskey, R. B. (1999). New method for the direct determination of dissolved Fe(III) concentration in acid mine waters. Environmental Science and Technology, 33(5), 807–813. https://doi.org/10.1021/es980684z
  44. Tomiyama, S., Igarashi, T., Tabelin, C. B., Tangviroon, P., & Ii, H. (2019). Acid mine drainage sources and hydrogeochemistry at the Yatani mine, Yamagata, Japan: A geochemical and isotopic study. Journal of Contaminant Hydrology, 225(March), 103502. https://doi.org/10.1016/j.jconhyd.2019.103502
  45. Tutu, H., McCarthy, T. S., & Cukrowska, E. (2008). The chemical characteristics of acid mine drainage with particular reference to sources, distribution and remediation: The Witwatersrand Basin, South Africa as a case study. Applied Geochemistry, 23(12), 3666–3684. https://doi.org/10.1016/j.apgeochem.2008.09.002
  46. Wei, X., Zhang, S., Shimko, J., & Dengler, R. W. (2019). Mine drainage: Treatment technologies and rare earth elements. Water Environment Research, 91(10), 1061–1068. https://doi.org/10.1002/wer.1178
  47. Whitehead, P. G., & Prior, H. (2005). Bioremediation of acid mine drainage: An introduction to the Wheal Jane wetlands project. Science of the Total Environment, 338(1-2 SPEC. ISS.), 15–21. https://doi.org/10.1016/j.scitotenv.2004.09.016
  48. Wibowo, Y. G., Sudibyo, Muhammad, D., Naswir, M., & Muljadi, B. P. (2020). Low-cost modified reactor to produce biochar and clamshell as alternative materials from acid mine drainage problem solving. IOP Conference Series: Earth and Environmental Science, 483(1). https://doi.org/10.1088/1755-1315/483/1/012031
  49. Wibowo, Yudha Gusti, Sudibyo, & Rosarina, D. (2020). Adsorption of metals ion with biochar derived from biomass waste with fixed column. International Journal of Academic Multidisciplinary Research, 4(2), 21–27
  50. Wibowo, Yudha Gusti, & Syarifuddin, H. (2018). Rancangan Dimensi Pada Tambang Terbuka Sebagai Upaya Pencegahan Kerusakan Lingkungan Yang Diakibat Oleh Air Asam Tambang. Semnas SINTA FT UNILA, 1, 49–53
  51. Wood, T. A., Murray, K. R., & Burgess, J. G. (2001). Ferrous sulphate oxidation using Thiobacillus ferrooxidans cells immobilised on sand for the purpose of treating acid mine-drainage. Applied Microbiology and Biotechnology, 56(3–4), 560–565. https://doi.org/10.1007/s002530100604
  52. Yang, B., Luo, W., Wang, X., Yu, S., Gan, M., Wang, J., Liu, X., & Qiu, G. (2020). The use of biochar for controlling acid mine drainage through the inhibition of chalcopyrite biodissolution. Science of the Total Environment, 737, 139485. https://doi.org/10.1016/j.scitotenv.2020.139485
  53. Zhang, M. (2011). Adsorption study of Pb(II), Cu(II) and Zn(II) from simulated acid mine drainage using dairy manure compost. Chemical Engineering Journal, 172(1), 361–368. https://doi.org/10.1016/j.cej.2011.06.017

Last update:

No citation recorded.

Last update: 2024-11-22 02:20:34

No citation recorded.