skip to main content

Fluctuations of PM2.5 and NOx Concentration and Their Relationship with Meteorological Factors in the Rural Area (Case Study: Puncak Bogor)

*Ni Putu Intan Permata Teani  -  IPB University, Indonesia
Ana Turyanti  -  IPB University, Indonesia
Ronald Christian Wattimena  -  Meteorology, Climatology and Geophysics Agency of the Republic of Indonesia, Indonesia
Yudith Vega Paramitadevi  -  IPB University, Indonesia
Farhan Kurniawan  -  IPB University, Indonesia

Citation Format:
Abstract

Rural areas are generally synonymous with better air quality than urban areas. However, if there is an agricultural activity, it has the potential to release nitrogen from the soil, be oxidized and form NO and NO2 in the air. These two gases encourage the formation of secondary PM2.5 particulates in the air of rural areas. This study aims to analyze fluctuations in PM2.5 concentration in rural areas, the effect of its precursor NOx, and the influence of meteorological factors. The location used as a case study is the Cibeureum area, Puncak, Bogor Regency. The data used are PM2.5, NO, NO2, NOx concentration data (per 3 hours), rainfall, air temperature, wind speed and direction in 2019 and 2020, which were analyzed using correlation and linear regression and the open-air package provided by RStudio. The results showed that the concentration of PM2.5 with NOx as a precursor had a significant positive correlation in 2019 (r = 0.68) and 2020 (r = 0.63). Cumulative precipitation affects the concentration of PM2.5 and NOx in the air. Meteorological factors have a small correlation value to fluctuations in PM2.5 concentration and NOx concentration except for air temperature (r = 0.3).

Note: This article has supplementary file(s).

Fulltext View|Download |  Thesis Document
Dokumen Skripsi
Subject
Type Thesis Document
  Download (2MB)    Indexing metadata
Keywords: Correlation; meteorogical factors; PM2.5; Puncak Bogor; precursor NOx
Funding: Indonesian Agency for Metrological, Climatological, and Geophysics (BMKG); National Institute for Environmental Japan (NIES Japan)

Article Metrics:

Article Info
Section: Regional Case Study
Language : EN
  1. Almaraz, M., E. Bai, Wang, C., Trousdell, J., Conley, S., Faloona, I., Houlton, B.Z., 2018. Agriculture is a major source of NOx pollution in California. Science Advances 4 (1) eaao3477
  2. Arunanta, L.N., 2020. Wisata diperketat karena pandemi, volume kendaraan ke Puncak Bogor turun [WWW Document]. URL https://news.detik.com/berita/d-5179988/wisata-diperketat-karena-pandemi- volume-kendaraan-ke-puncak-bogor-turun. (accessed 5.7.21)
  3. Bassani, C., Vichi, F., Esposito, G., Montagnoli, M., Giusto, M., Ianniello, A., 2021. Nitrogen dioxide reductions from satellite and surface observations during covid-19 mitigation in Rome (Italy). Environmental Science and Pollution Research 1 – 24
  4. Bartonova, A., Colette, A., Zhang, H., Fons, J., Liu, H-Y., Brzezina, J., Chantreux, A., Couvidat, F., Guerreiro, C., Guevara, M., Kuenen, J.J.P., Solberg, S., Super, I., Szanto, I., Tarrason, L., Thornton, A., Gonzalez-Ortiz, A., 2022. The Covid-19 pandemic and environmental stressors in Europe: synergies and interplays, ETC ATNI report 2021/16, Kjeller
  5. Carslaw, D., 2019. An open-air manual is an open-source tool for analyzing air pollution data. London: King’s College London
  6. Chang, Y., Zhang,Y.L., Kawichai, S., Wang, Q., Damme, M.V., Clarisse, L., Prapamontol, P., Lehmann, M.F., 2020. Convergent estimates of biomass burning-derived atmospheric ammonia in Peninsular Southeast Asia. Atmospheric Chemistry and Physics Discussions 1-25
  7. Chen, D., Liu, X., Lang, J., Zhou, Y., Wei, L., Wang, X., Guo, X., 2017. Estimating the contribution of regional transport to PM2.5 air pollution in a rural area on the North China Plain. Science of Total Environment 1, 280 – 291
  8. Gasmi, K., Aljalal, A., Al-Basheer, W., Abdulahi, M., 2017. Analysis of NOx, NO, and NO2 ambient levels as a function of meteorological parameters in Dhahran, Saudi Arabia. WIT Transactions on Ecology and The Environment 211, 77 – 86
  9. Godish, T., 1977. Air Quality. 4th Edition. Boca Raton: Lewis Publisher, CRC Press LLC
  10. Gough,W.A., Anderson, V., 2022. Changing air quality and the ozone weekend effect during the COVID-19 Pandemic in Toronto, Ontario. Climate 10, 41
  11. Grabowski, B., 2016. “p < 0.05” might not mean what you think: American statistical association clarifies p-values. Journal of the National Cancer Institute 108, 1 – 9
  12. Han, S., Bian, H., Feng, Y., Liu, A., Li, X., Zeng, F., Zhang, X., 2011. Analysis of the relationship between O3, NO and NO2 in Tianjin, China. Aerosol and Air Quality Research, 11, 128–139
  13. Hasanah, A.U., 2018. Fenomena Long Range Transport pada Dispersi Ozon dan NOx di Wilayah Bogor. IPB University Scientific Repository
  14. He, C., Yang, L., Cai, B., Ruan, Q., Hong, S., Wang, Z., 2021. Impacts of the COVID-19 event on the NOx emissions of key polluting enterprises in China. Applied Energy 281, 116042
  15. Hernandez, G., Berry, T.A., Wallis, S.L., Poyner, D., 2017. Temperature and humidity effects particulate matter concentrations in a sub-tropical climate during winter. Proceedings of International Conference of the Environment, Chemistry, and Biology 102, 41 – 49
  16. Hodan, W.M., Barnard, R.W., 2004. Evaluating the Contribution of PM2.5 Precursor Gases and Re-entrained Road Emissions to Mobile Source PM2.5 Particulate Matter Emissions. Washington: Federal Highway Administration
  17. Immanuel, G.S., Rakhman, A., Budianto, B., Boer. R., Ardiansyah, M., Hamid, N., Gumilang, I., Nishihashi, M., Mukai, H., Terao, Y., Hashimoto, S., Osonoi, Y., Nugroho, R., Suwedi, N., Rifai, A, Ihsan, I.M., Sulaiman, A., Gunawan, D., Suharguniyawan, E., Nugraha, M.S., Wattimena, R.C., 2019. Real time air quality monitoring system in three sites (Bogor, Cibeureum and Serpong). International Conference On Tropical Meteorology And Atmospheric Sciences 303, 012055
  18. Leibensperger, E.M., Mickley, L.J., Jacob, D.J., Barrett, S.R.H., 2011. Intercontinental influence of NOx and CO emissions on particulate matter air quality. Atmospheric Environment 45, 3318 – 3324
  19. Li, J., Chen, H., Li, Z., Wang, P., Cribb, M., Fan, X., 2015. Low-level temperature inversions affect aerosol condensation nuclei concentrations under different large-scale synoptic circulations. Advances Atmospheric Science 32, 898 – 908
  20. Liu, J., Lipsitt, J., Jerrett, M., Zhu, Y., 2021. Decreases in near-road NO and NO2 concentrations during the COVID-19 pandemic in California. Environmental Science & Technology Letters 8, 161−167
  21. Liu, Z., Shen, L., Yan, C., Du, J., Li, Y., Zhao, H., 2020. Analysis of the influence of precipitation and wind on PM2.5 and PM10 in the atmosphere. Advances in Meteorology 13, 1 – 15
  22. López-Aparicio, S., Guerreiro, C., Viana, M., Reche, C., Querol, X., 2013. Contribution of Agriculture to Air Quality Problems in Cities and Rural Areas in Europe. Netherland: The European Topic Centre on Air Pollution and Climate Change Mitigation (ETC/ACM)
  23. Majra, J.P., 2011. Air Quality in Rural Areas, Chemistry, Emission Control, Radioactive Pollution, and Indoor Air Quality. London: IntechOpen
  24. Manning, M.I., Martin, R.V., Hasenkopf, C., Flasher, J., Li, C., 2018. Diurnal patterns in global refined particulate matter concentration. Environmental Science & Technology Letters 5, 687 – 91
  25. Misra, P., Takigawa, M., Khatri, P., Dhaka, S.K., Dimri, A.P., Yamaji, K., Kajino, M., Takeuchi, W., Imasu, R., Nitta, K., Patra, P.K., Hayashida, S., 2021. Nitrogen oxides concentration and emission change detection during COVID‑19 restrictions in North India. Scientific Reports 11, 9800
  26. Mukhtar, R., Panjaitan, E.H., Wahyudi, H., Santoso, M., Kurniawati, S., 2013. Komponen kimia PM2,5 dan PM10 di udara ambien di Serpong – Tangerang. Jurnal Ecolab 7, 1–7
  27. Mulyana, E., 2012. Variasi diurnal angin permukaan di lereng Gunung Gede Pangrango. Jurnal Sains dan Teknologi Modifikasi Cuaca 13, 77 – 82
  28. Nabilah, F., Prasetyo, Y., Sukmono, A., 2017. Analisis pengaruh fenomena el nino dan la nina terhadap curah hujan tahun 1998-2016 menggunakan indikator ONI (oceanic nino index) (Studi Kasus: Provinsi Jawa Barat). Jurnal Geodesi Undip 6, 402 – 412
  29. Paiman, 2019. Teknik Analisis Korelasi dan Regresi Ilmu-Imu Pertanian. Yogyakarta: UPY Press
  30. Pemerintah Republik Indonesia, 2021. Peraturan Pemerintah Republik Indonesia No. 22 Tahun 2021 tentang Pengendalian Pencemaran Udara. Jakarta: Sekretaris Kabinet Republik Indonesia
  31. Pancholi, P., Kumar, A., Bikundia, D.S., Chouraisya, C., 2018. An observation of seasonal and diurnal behavior of O3eNOx relationships and local/ regional oxidant (OX ¼ O3 þ NO2) levels at a semi-arid urban site of western India. Sustainable Environment Research 28, 79-89
  32. Prabowo, K., Muslim, B., 2018. Penyehatan Udara. Jakarta: Badan Pengembangan dan Pemberdayaan Sumber Daya Manusia Kesehatan
  33. Song, F., Shin, J.Y., Jusino-Atresino, R., Gao, Y., 2011. Relationships among the springtime ground–level NOx, O3, and NO2 in the vicinity of highways on the US East Coast. Atmospheric Pollution Research 2, 374 – 383
  34. Wang, J., Ogawa, S., 2015. Effects of meteorological conditions on PM2.5 concentrations in Nagasaki, Japan. International Journal of Environmental Research and Public Health 12, 9089 – 9101
  35. Wang, L., Li, M., Yu, S., Chen, X., Li, Z., Zhang, Y., Jiang, L., Xia, Y., Li, J., Liu, W., Li, P., Rosenfeld, D., Seinfeld, J.H., 2020. The unexpected rise of ozone in urban and rural areas, and sulfur dioxide in rural areas during the coronavirus city lockdown in Hangzhou, China: implications for air quality. Environmental Chemistry Letters 18, 1713 – 1723
  36. Wang-Li, L., 2015. Insights to the forming secondary inorganic PM2.5: current knowledge and future needs. International Journal of Agricultural and Biological Engineering 8, 1-13
  37. Wang, S., Nan, J., Shi, C., Fu, Q., Gao, S., Wang, D., Cui, H., Saiz-Lopez, A., Zhou, B., 2015. Atmospheric ammonia and its impacts on regional air quality over The Megacity of Shanghai, China. Scientific Report 5, 15842
  38. Xing, Y.F., Xu, Y.H., Shi, M.H., Lian, Y.X., 2016. The impact of PM2.5 on the human respiratory system. Journal of Thoracic Disease 8, 69 – 74
  39. Zhang, Z., Liu, Y., Liu, H., Hao, A., Zhang, Z., 2022. The impact of lockdown on nitrogen dioxide ( NO2) over Central Asian countries during the COVID‑19 pandemic. Environmental Science and Pollution Research 29, 18923–18931
  40. Zhao, X., Sun, Y., Zhao, C., Jiang, H., 2020. Impact of precipitation with different intensity on PM2.5 over specific regions of China. Atmosphere 11, 1 – 15
  41. Zhao, X., Zhang, X., Xu, X., Xu, J., Meng, W., Pu, W., 2009. Seasonal and diurnal variations of ambient PM2.5 concentration in urban and rural environments in Beijing. Atmospheric Environment 43, 2893 – 2900

Last update:

No citation recorded.

Last update: 2025-01-21 05:30:18

No citation recorded.