skip to main content

Bioconversion of Black Soldier Fly (BSF) from Organic Waste Composting into Biodiesel Assisted by Whole Cell Microbial Lipase Biocatalyst through Direct Transesterification Process

Sari Sekar Ningrum scopus  -  Universitas Jayabaya, Indonesia
*Aidha Zulaika  -  Universitas Ibn Khaldun, Indonesia
Briantama Hanif S  -  Universitas Jayabaya, Indonesia
Dewa Ayu Dinda  -  Universitas Jayabaya, Indonesia

Citation Format:
Abstract

Black Soldier Fly or Hermetia Illucens (BSF) is known for its potential as a biological agent that helps in the process of natural conversion of organic waste. Resulting compost and a large number of BSF colonies, potentially to be use as a non-food raw material in bioenergy production. The Method is BSF conversion experiment by direct transesterification reaction using Lab-scale bioreactor in 100ml three bottle neck flasks, the solution mixture consists of BSF powder, immobilized whole cell biocatalyst, and solvent. The Result is although in appearance the structure of the test mixture solution did not show an oily character, but based on the viscosity and density test, the test solution had density value 0.81 g/cm3 and viscosity value 1,024 mm2 /s which are above the value of the viscosity and density of methanol but still below the value of the viscosity and density of both SNI and EN14214 biodiesel standard, this could be due to insufficient separation or reaction, imperfect condition, and impurities that are still present in biodiesel products. It can be concluded that a transesterification reaction has occurred in this trial, however further analysis and more experiments are required to definitely conclude the changes in biodiesel production.

Fulltext View|Download
Keywords: Black soldier fly; biodiesel; organic waste; whole cell biocatalyst; direct transesterification
Funding: Universitas Jayabaya

Article Metrics:

  1. Almyasheva, N.R., Shuktueva, M.I., Petrova, D.A., Kopitsyn, D.S., Kotelev, M.S., Vinokurov, V.A., Novikov, A.A., 2018. Biodiesel fuel production by Aspergillus niger whole-cell biocatalyst in optimized medium. Mycoscience 59, 147–152
  2. Anteneh, Y.S., Franco, C.M.M., 2019. Whole cell actinobacteria as biocatalysts. Front Microbiol 10
  3. Badan Standardisasi Nasional, 2015. SNI 7182:2015, Badań Standardisasi Nasional
  4. Ban, K., Hama, S., Nishizuka, K., Kaieda, M., Matsumoto, T., Kondo, A., Noda, H., Fukuda, H., 2002. Repeated use of whole-cell biocatalysts immobilized within biomass support particles for biodiesel fuel production, Journal of Molecular Catalysis B: Enzymatic
  5. Bulak, P., Proc, K., Pawłowska, M., Kasprzycka, A., Berus, W., Bieganowski, A., 2020. Biogas generation from insects breeding post production wastes. Journal of Cleaner Production 244
  6. Çağatay, Ş., Tuncay Çağatay, M., Manager, B., 2022. Optimization of biodiesel production from waste cooking oil using Rhizopus arrhizus as a whole-cell 2 biocatalyst and kinetic modelling and thermodynamic analysis 3 4 5
  7. De Vasconcellos, A., Bergamasco Laurenti, J., Miller, A.H., Da Silva, D.A., De Moraes, F.R., Aranda, D.A.G., Nery, J.G., 2015. Potential new biocatalysts for biofuel production: The fungal lipases of Thermomyces lanuginosus and Rhizomucor miehei immobilized on zeolitic supports ion exchanged with transition metals. Microporous and Mesoporous Materials 214, 166–180
  8. Deeba, F., Kumar, B., Arora, N., Singh, S., Kumar, A., Han, S.S., Negi, Y.S., 2020. Novel bio-based solid acid catalyst derived from waste yeast residue for biodiesel production. Renewable Energy 159, 127–139
  9. FAME EN 14214:2012, 2012
  10. Faturahman, A.T., 2019. Actinobacteria: sumber biokatalis baru yang potensial. BioTrends 10, 28–35
  11. Ferrero, G.O., Sánchez Faba, E.M., Rickert, A.A., Eimer, G.A., 2020. Alternatives to rethink tomorrow: Biodiesel production from residual and non-edible oils using biocatalyst technology. Renewable Energy 150, 128–135
  12. Franco, A., Scieuzo, C., Salvia, R., Petrone, A.M., Tafi, E., Moretta, A., Schmitt, E., Falabella, P., 2021. Lipids from hermetia illucens, an innovative and sustainable source. Sustainability (Switzerland) 13
  13. Fukuda, H., Hama, S., Tamalampudi, S., Noda, H., 2008. Whole-cell biocatalysts for biodiesel fuel production. Trends Biotechnol
  14. Gumba, R.E., Saallah, S., Misson, M., Ongkudon, C.M., Anton, A., 2016. Green biodiesel production: A review on feedstock, catalyst, monolithic reactor, and supercritical fluid technology. Biofuel Research Journal
  15. He, Q., Xia, Q., Wang, Y., Li, X., Zhang, Y., Hu, B., Wang, F., 2016. Biodiesel production: Utilization of loofah sponge to immobilize Rhizopus chinensis CGMCC #3.0232 cells as a whole-cell biocatalyst. J Microbiol Biotechnol 26, 1278–1284
  16. He, S., Lian, W., Liu, X., Xu, W., Wang, W., Qi, S., 2022. Transesterification synthesis of high-yield biodiesel from black soldier fly larvae using the combination of Lipase Eversa Transform 2.0 and Lipase SMG1. Food Science and Technology (Brazil) 42
  17. Hong, T., Chandiramani, N., Restrepo-Cano, J., Sarathy, S.M., 2018. New approach to improving fuel and combustion characteristics of black soldier fly oil. Chemical Engineering Transactions 65, 31–36
  18. Ishak, S., Kamari, A., Yusoff, S.N.M., Halim, A.L.A., 2018. Optimisation of biodiesel production of Black Soldier Fly larvae rearing on restaurant kitchen waste. In: Journal of Physics: Conference Series. Institute of Physics Publishing
  19. Jemli, S., Ayadi-Zouari, D., Hlima, H. Ben, Bejar, S., 2016. Biocatalysts: Application and engineering for industrial purposes. Critical Review and Biotechnology
  20. Jia, W., Zhang, R., Liu, Y., 2018. Entrapment of Rhizopus oryzae lipase displayed on Saccharomyces cerevisiae surface as whole cell biocatalyst for biodiesel synthesis. In: Advance in Engineering Research, 1007–1010
  21. Kamari, A., Ishak, S., Hussin, M.I.A.M., Wong, S.T.S., Jumadi, J., Yahaya, N.M., 2020. Optimisation and characterisation studies of biodiesel production from black soldier fly larvae fed by soya residue. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing Ltd
  22. Katre, G., Raskar, S., Zinjarde, S., Ravi Kumar, V., Kulkarni, B.D., RaviKumar, A., 2018. Optimization of the in situ transesterification step for biodiesel production using biomass of Yarrowia lipolytica NCIM 3589 grown on waste cooking oil. Energy 142, 944–952
  23. Kumar, D., Das, T., Giri, B.S., Verma, B., 2020. Optimization of biodiesel synthesis from nonedible oil using immobilized bio-support catalysts in jacketed packed bed bioreactor by response surface methodology. Journal Clean and Production 244
  24. Leong, S.Y., Chong, S.S., Chin, K.S., 2018. Biodiesel Derive Bio-oil of Hermetia illucens Pre-pupae Catalysed by Sulphonated Biochar. In: E3S Web of Conferences. EDP Sciences
  25. Li, Q., Zheng, L., Cai, H., Garza, E., Yu, Z., Zhou, S., 2011. From organic waste to biodiesel: Black soldier fly, Hermetia illucens, makes it feasible. Fuel 90, 1545–1548
  26. Longyu Zheng, Q.L., 2011. Insect Fat a Promising Resource for Biodiesel. J Pet Environ Biotechnol s2
  27. Madavi, T.B., Chauhan, S., Keshri, A., Alavilli, H., Choi, K.-Y., Pamidimarri, S.D.V.N., 2021. Whole-cell biocatalysis: Advancements toward the biosynthesis of fuels. Biofuels, Bioproducts and Biorefining 16, 859–876
  28. Mangindaan, D., Kaburuan, E.R., Meindrawan, B., 2022. Black soldier fly larvae (Hermetia illucens) for biodiesel and/or animal feed as a solution for waste-food-energy nexus: bibliometric analysis. Sustainability 14
  29. Manzano-Agugliaro, F., Sanchez-Muros, M.J., Barroso, F.G., Martínez-Sánchez, A., Rojo, S., Pérez-Bañón, C., 2012. Insects for biodiesel production. Renewable and Sustainable Energy Reviews 16, 3744–3753
  30. Mohan, K., Sathishkumar, P., Rajan, D.K., Rajarajeswaran, J., Ganesan, A.R., 2023. Black soldier fly (Hermetia illucens) larvae as potential feedstock for the biodiesel production: Recent advances and challenges. Science of The Total Environment 859
  31. Nguyen, H.C., Liang, S.H., Doan, T.T., Su, C.H., Yang, P.C., 2017. Lipase-catalyzed synthesis of biodiesel from black soldier fly (Hermetica illucens): Optimization by using response surface methodology. Energy Convers Manag 145, 335–342
  32. Nguyen, H.C., Liang, S.H., Li, S.Y., Su, C.H., Chien, C.C., Chen, Y.J., Huong, D.T.M., 2018. Direct transesterification of black soldier fly larvae (Hermetia illucens) for biodiesel production. Journal of Taiwan Institute of Chemical Engineering 85, 165–169
  33. Oduro-Kwarteng, S., Fosu Gyasi, S., Buamah, R., Donkor, E., Sarpong, D., Oduro Kwarteng, S., Yaw Botchway, E., Acquah, S., 2018. Biodegradation of heterogeneous mixture of organic fraction of municipal solid waste by black soldier fly larvae (Hermetia Illucens) under the tropical climate conditions. IJISET-International Journal of Innovative Science, Engineering & Technology
  34. Ondul, E., Dizge, N., Keskinler, B., Albayrak, N., 2015. Biocatalytic production of biodiesel from vegetable oils. Biofuels
  35. Park, J.Y., Jung, S., Na, Y.G., Jeon, C.H., Cheon, H.Y., Yun, E.Y., Lee, S.H., Kwon, E.E., Kim, J.K., 2022. Biodiesel production from the black soldier fly larvae grown on food waste and its fuel property characterization as a potential transportation fuel. Environmental Engineering Research 27
  36. Parwata, I.P., Oviantari, M.V., 2016. Immobilization of lipase-producing bacteria acinetobacter baumannii on paddy straw powder. Bioscience Biotechnology Research Asia 13, 661–668
  37. Ramli, A., Farooq, M., Naeem, A., Khan, S., Hummayun, M., Iqbal, A., Ahmed, S., Shah, L.A., 2017. Bifunctional heterogeneous catalysts for biodiesel production using low cost feedstocks: a future perspective. Bioenergy and Biofuels
  38. Regner, E.L., Salvatierra, H.N., Baigorí, M.D., Pera, L.M., 2019. Biomass-bound biocatalysts for biodiesel production: Tuning a lipolytic activity from Aspergillus niger MYA 135 by submerged fermentation using agro-industrial raw materials and waste products. Biomass Bioenergy 120, 59–67
  39. Riwayati, I., Hartati, I., Kurniasari, L., 2012. Microorganism immobilize cell technology in lipase enzyme production. Prociding SNST 3rd. Faculty of Engineering, Universities Wahid Hasyim Semarang
  40. Rizwanul Fattah, I.M., Ong, H.C., Mahlia, T.M.I., Mofijur, M., Silitonga, A.S., Ashrafur Rahman, S.M., Ahmad, A., 2020. State of the art of catalysts for biodiesel production. Front Energy Research
  41. Salman, N., Nofiyanti, E., Nurfadhilah, T., 2020. Pengaruh dan efektivitas maggot sebagai proses alternatif penguraian sampah organik kota di Indonesia. Serambi Engineering V
  42. Sánchez-Bayo, A., Morales, V., Rodríguez, R., Vicente, G., Bautista, L.F., 2019. Biodiesel production (FAEEs) by heterogeneous combi-lipase biocatalysts using wet extracted lipids from microalgae. Catalysts 9
  43. Saranya, G., Ramachandra, T. V., 2020. Novel biocatalyst for optimal biodiesel production from diatoms. Renew Energy 153, 919–934
  44. Sawangkeaw, R., Ngamprasertsith, S., 2013. A review of lipid-based biomasses as feedstocks for biofuels production. Renewable and Sustainable Energy Reviews 25, 97–108
  45. Silaban, D.P., Makalalag, A.K., 2020. Minyak jelantah production and characterization biodiesel from used cooking oil. Jurnal Penelitian Teknologi Industri 12, 31–40
  46. Sitepu, E.K., Perangin-angin, S., Ginting, G.J., Machmudah, S., Sari, R.N., Tarigan, J.B., 2023. Controlled crushing device-intensified direct biodiesel production of black soldier fly larvae. Heliyon 9
  47. Srimhan, P., Hongpattarakere, T., 2023. Scale-up lipase production and development of methanol tolerant whole-cell biocatalyst from magnusiomyces spicifer spb2 in stirred-tank bioreactor and its application for biodiesel production. Catalysts 13
  48. Sun, T., Du, W., Liu, D., Li, W., Zeng, J., Dai, L., 2019. Stability of whole cell biocatalyst for biodiesel production from renewable oils. Chin J Biotechnol 25, 1379–1385
  49. Sun, Y., Cooke, P., Reddy, H.K., Muppaneni, T., Wang, J., Zeng, Z., Deng, S., 2017. 1-Butyl-3-methylimidazolium hydrogen sulfate catalyzed in-situ transesterification of Nannochloropsis to fatty acid methyl esters. Energy Convers Manag 132, 213–220
  50. Surendra, K.C., Olivier, R., Tomberlin, J.K., Jha, R., Khanal, S.K., 2016. Bioconversion of organic wastes into biodiesel and animal feed via insect farming. Renewable Energy 98, 197–202
  51. Tacias-Pascacio, V.G., Virgen-Ortíz, J.J., Jiménez-Pérez, M., Yates, M., Torrestiana-Sanchez, B., Rosales-Quintero, A., Fernandez-Lafuente, R., 2017. Evaluation of different lipase biocatalysts in the production of biodiesel from used cooking oil: Critical role of the immobilization support. Fuel 200, 1–10
  52. Wahyuningsih, Supriyo, E., Broto, R.T.W., 2015. Biokatalis lipase rhizopus oryzae pada reaksi transesterifikasi lipid terstruktur kaya asam lemak. Metana 11, 7–12
  53. Wang, H., Rehman, K.U., Liu, X., Yang, Q., Zheng, L., Li, W., Cai, M., Li, Q., Zhang, J., Yu, Z., 2017. Insect biorefinery: A green approach for conversion of crop residues into biodiesel and protein. Biotechnol Biofuels 10
  54. Xiao, M., Qi, C., Obbard, J.P., 2011. Biodiesel production using Aspergillus niger as a whole-cell biocatalyst in a packed-bed reactor. GCB Bioenergy 3, 293–298
  55. Yan, J., Zheng, X., Du, L., Li, S., 2014. Integrated lipase production and in situ biodiesel synthesis in a recombinant Pichia pastoris yeast: An efficient dual biocatalytic system composed of cell free enzymes and whole cell catalysts. Biotechnol Biofuels 7
  56. Yan, Y., Xu, L., Dai, M., 2012. A synergetic whole-cell biocatalyst for biodiesel production. RSC Adv 2, 6170–6173
  57. Yusaf, T., Kamarulzaman, M.K., Adam, A., Hisham, S., Ramasamy, D., Kadirgama, K., Samykano, M., Subramaniam, S., 2022. Physical-chemical properties modification of hermetia illucens larvae oil and diesel fuel for the internal combustion engines application. Energies (Basel) 15
  58. Yuwono, A.S., Mentari, P.D., 2018. Penggunaan larva (maggot) black soldier fly (BSF) dalam pengolahan limbah organik. 1st ed. SEAMEO BIOTROP, Bogor
  59. Zhang, Y., Li, Y., Zhang, X., Tan, T., 2015. Biodiesel production by direct transesterification of microalgal biomass with co-solvent. Bioresource Technology 196, 712–715
  60. Zheng, L., Li, Q., Zhang, J., Yu, Z., 2012. Double the biodiesel yield: Rearing black soldier fly larvae, Hermetia illucens, on solid residual fraction of restaurant waste after grease extraction for biodiesel production. Renewable Energy 41, 75–79
  61. Zhu, Z., Rehman, K.U., Yu, Y., Liu, X., Wang, H., Tomberlin, J.K., Sze, S.H., Cai, M., Zhang, J., Yu, Z., Zheng, J., Zheng, L., 2019. De novo transcriptome sequencing and analysis revealed the molecular basis of rapid fat accumulation by black soldier fly (Hermetia illucens, L.) for development of insectival biodiesel. Biotechnology Biofuels 12

Last update:

No citation recorded.

Last update: 2024-06-20 23:21:23

No citation recorded.