skip to main content

Characteristics of Wastewater Generated by the Snack Food (Cookies) Industry

*Ahmad Habibi  -  Universitas Sultan Ageng Tirtayasa, Indonesia
Sjaifuddin Sjaifuddin  -  Universitas Sultan Ageng Tirtayasa, Indonesia
Juwarin Pancawati  -  Universitas Sultan Ageng Tirtayasa, Indonesia

Citation Format:
Abstract

The snack food industry is one of the major industries in Indonesia that has various types of products, one of which is snacks (cookies), which are widely consumed as snacks. This study aims to determine the characteristics of wastewater from the snack food industry (cookies). The research was conducted in three factories located in Bandung Regency, Sumedang Regency and Majalengka Regency. Primary data were collected from wastewater samples collected monthly for laboratory testing. Data analysis used descriptive statistical analysis of average concentration of wastewater parameters using Microsoft Excel software and SPSS 25 software. The main parameters of wastewater from the snack food industry (cookies) are pH, TSS, BOD, COD, ammonia, total nitrogen, and MBAS. From the comparison of the resulting BOD, COD, TSS, ammonia, and total nitrogen pollutant loads, the largest load trends occur in Factory B, Factory C, and Factory A. Failure to properly treat these crucial wastewater parameters can pose risks to the environment and surrounding communities. Thus, these vital parameters form the basis for selecting wastewater treatment plant technology to fulfil environmental standards. WWTP process recommendations that can be used are grease trap, surge tank, dissolved air flotation (DAF), anaerobic system, aerobic system, secondary clarifier, and post-treatment.

 
Fulltext View|Download
Keywords: Key parameters; snack food industry; wastewater characteristics

Article Metrics:

Article Info
Section: Original Research Article
Language : EN
  1. Abdallh, M. N., Abdelhalim, W. S., & Abdelhalim, H. 2016. Industrial Wastewater Treatment of Food Industry Using Best Techniques
  2. Abdullah, M., Umboh, J. M. L., & Bernadus, J. 2019. Gambaran Kualitas Limbah Cair di Rumah Sakit Umum Daerah Bitung (RSUD) Tahun 2015. Community Health, 4(1), 47–52
  3. Aderibigbe, D. O., Giwa, A.-R. A., & Bello, I. A. 2018. Characterization and treatment of wastewater from food processing industry: A review
  4. Arifudin, A., Setiyono, S., Priyanto, F. E., & Sulistia, S. 2020. Evaluasi Instalasi Pengolahan Air Limbah Industri Pengolahan Makanan. Jurnal Air Indonesia, 11(1)
  5. Azzam, A., Uddin, H. and Mannan, U. 2022 ‘Estimation of Suspended Sediment Concentration of Keenjhar Lake through Remote Sensing’, Engineering Proceedings, 22(1)
  6. Burkholder, J. M. 2003. Eutrophication and Oligotrophication. Dalam Encyclopedia of Biodiversity (hlm. 649–670). Elsevier
  7. Botheju, D. and Bakke, R. 2011 ‘Oxygen effects in anaerobic digestion-A review’, The Open Waste Management journal, 4, pp. 1–19
  8. Buchanan, J.R. and Seabloom, R.W. 2004. Aerobic Treatment of Wastewater and Aerobic Treatment Units, University Curriculum Development for Decentralized Wastewater Management, (November), pp. 1–27
  9. Butler, B.A. and Ford, R.G. 2018 Evaluating relationships between total dissolved solids (TDS) and total suspended solids (TSS) in a mining-influenced watershed’, Mine Water and the Environment, 37(1), pp. 18–30
  10. Cristian, O. 2010. Characteristics Of The Untreated Wastewater Produced By Food Industry. Dalam Fascicula:Protecţia Mediului: Vol. XV
  11. Dahlan, & Bintang, S. 2000. Pokok-pokok hukum ekonomi dan bisnis. Citra Aditya Bakti
  12. Daud, M. K., Rizvi, H., Akram, M. F., Ali, S., Rizwan, M., Nafees, M., & Jin, Z. S. 2018. Review of upflow anaerobic sludge blanket reactor technology: effect of different parameters and developments for domestic wastewater treatment. Journal of Chemistry, 2018, 1–13
  13. De Santana, M. M., Zanoelo, E. F., Benincá, C., & Freire, F. B. 2018. Electrochemical treatment of wastewater from a bakery industry: Experimental and modeling study. Process Safety and Environmental Protection, 116, 685–692
  14. Ebrahimi, A. and Najafpour, G.D. 2016. Biological Treatment Processes : Suspended Growth vs . Attached Growth, Iranica Journal of Energy and Environment, 7(2), pp. 114–123
  15. Eckenfelder Jr, W. W., & Staff, U. by. 2000. Wastewater treatment. Kirk‐Othmer Encyclopedia of Chemical Technology
  16. Edzwald, J.K. 2010. Dissolved air flotation and me. Water Research, 44(7), pp. 2077–2106
  17. Fanaie, V.R. and Khiadani, M. 2020. Effect of salinity on air dissolution, size distribution of microbubbles, and hydrodynamics of a dissolved air flotation (DAF) system’, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 59 1 (February), p. 124547
  18. Gemina, D., Silaningsih, E., & Yuningsih, E. 2016. Pengaruh Motivasi Usaha terhadap Keberhasilan Usaha dengan Kemampuan Usaha sebagai Variabel Mediasi pada Industri Kecil Menengah Makanan Ringan Priangan Timur-Indonesia. Jurnal Manajemen Teknologi, 15(3), 297–323
  19. Gerardi, M. H. 2002. Nitrification and denitrification in the activated sludge process. John Wiley & Sons
  20. Ginting, P. 2007. Sistem Pengelolaan Lingkungan Dan Limbah Industri. Yrama Widya
  21. Gisen, M. 2018. Pengawasan Mutu Pengolahan Limbah Cair Di Pt. Indofood Fritolay Makmur
  22. Gunstone, F. 2009. Oils and fats in the food industry. John Wiley & Sons
  23. Gypens, N., Borges, A. V., & Lancelot, C. 2009. Effect of eutrophication on air–sea CO2 fluxes in the coastal Southern North Sea: a model study of the past 50 years. Global Change Biology, 15(4), 1040–1056
  24. Karathanasis, A. D., Potter, C. L., & Coyne, M. S. 2003. Vegetation effects on fecal bacteria, BOD, and suspended solid removal in constructed wetlands treating domestic wastewater. Ecological engineering, 20(2), 157–169
  25. Krishna, D. and Kalamdhad, A.S. (2014) ‘Pre-treatment and anaerobic digestion of food waste for high rate methane production - A review’, Journal of Environmental Chemical Engineering, 2(3), pp. 1821–1830
  26. Kodoatie, R. J. 1995. Analisis Ekonomi Teknik
  27. Komala, R., & Aziz, S. 2019. Pengaruh proses aerasi terhadap pengolahan limbah cair Factory kelapa sawit di PTPN VII secara aerobik. Jurnal Redoks, 4(2), 7–16
  28. Kothari, R., Pandey, A. K., Kumar, S., Tyagi, V. V, & Tyagi, S. K. (2014). Different aspects of dry anaerobic digestion for bio-energy: An overview. Renewable and Sustainable Energy Reviews, 39, 174–195
  29. Krzemińska, D., Neczaj, E., & Borowski, G. 2015. Advanced Oxidation Processes For Food Industrial Wastewater Decontamination. Journal of Ecological Engineering, 16, 61–71
  30. Maddela, N.R., Cruzatty, L.C.G. and Chakraborty, S. 2021 Advances in the domain of environmental biotechnology, Environmental and Microbial Biotechnology
  31. Malik, R. A., Vistanty, H., Setianingsih, N. I., Crisnaningtyas, F., & Zen, N. 2016. Pengolahan Air Limbah Industri Bakery Menggunakan Sistem Stripper-Lumpur Aktif. Jurnal Riset Teknologi Pencegahan Pencemaran Industri, 7(2), 89–98
  32. Meylinda, A. R. 2014. Perhitungan Neraca Massa Untuk Instalasi Pengolahan Air Limbah Terpadu. Jurnal Ilmiah Tekno, 11(2), 87–100
  33. Mutamim, N.S.A. et al. 2012. Application of membrane bioreactor technology in treating high strength industrial wastewater: A performance review. Desalination, 305, pp. 1–11
  34. Nugraha, Y. W., & Setiyono, S. 2019. Desain Instalasi Pengolahan Air Limbah Industri Pt Natura Perisa Aroma Lampung. Jurnal Air Indonesia, 11(2)
  35. Overseas Environmental Cooperation Center, J. 2003. Technology Transfer Manual of Industrial Wastewater Treatment
  36. Oy, V. and Hannus, J. 2020 When dairy industry discharges wastewater to municipal sewers – What should you know ?, Better Efficiency for Industrial sewage
  37. Pambudi, Y. S., Sudaryantiningsih, C., & Geraldita, G. 2021. Analisis Karakteristik Air Limbah Industri Tahu Dan Alternatif Proses Pengolahannya Berdasarkan Prinsip-Prinsip Teknologi Tepat Guna. 6(8)
  38. Pervez, M. N., Mishu, M. R., Stylios, G. K., Hasan, S. W., Zhao, Y., Cai, Y., Zarra, T., Belgiorno, V., & Naddeo, V. (2021). Sustainable treatment of food industry wastewater using membrane technology: A short review. Dalam Water (Switzerland) (Vol. 13, Nomor 23). MDPI
  39. Prabowo, R. 2017. Kadar Nitrit Pada Sumber Air Sumur Di Kelurahan Meteseh, Kec. Tembalang, Kota Semarang. CENDEKIA EKSAKTA, 1(2)
  40. Puchlik, M., & Struk-Sokołowska, J. 2017. Comparison of the composition of wastewater from fruit and vegetables as well as dairy industry. E3S Web of Conferences, 17, 00077
  41. Putri, W. A. E., Purwiyanto, A. I. S., Agustriani, F., & Suteja, Y. 2019. Kondisi nitrat, nitrit, amonia, fosfat dan BOD di Muara Sungai Banyuasin, Sumatera Selatan. Jurnal Ilmu dan Teknologi Kelautan Tropis, 11(1), 65–74
  42. Qasim, S. R., & Zhu, G. 2017. Wastewater treatment and reuse, theory and design examples, volume 1: Principles and basic treatment. CRC press
  43. Qasim, W., & Mane, A. V. 2013. Characterization and treatment of selected food industrial effluents by coagulation and adsorption techniques. Water Resources and Industry, 4, 1–12
  44. Rajagopal, R., Saady, N., Torrijos, M., Thanikal, J., & Hung, Y.-T. 2013. Sustainable Agro-Food Industrial Wastewater Treatment Using High Rate Anaerobic Process. Water, 5(1), 292–311
  45. Rambe, S. M. 2017. Kajian Perilaku Hubungan Parameter Bod terhadap Amoniak (Nh4+), Nitrit (No2-) dan Nitrat (No3-) pada Pengolahan Limbah Laboratorium. Jurnal Teknik dan Teknologi, 12(24), 21–27
  46. Risamasu, F. J. L., & Prayitno, H. B. 2011. Kajian zat hara fosfat, nitrit, nitrat dan silikat di perairan Kepulauan Matasiri, Kalimantan Selatan. ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 16(3), 135–142
  47. Sagan, V. et al. 2020 Monitoring inland water quality using remote sensing: potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing, Earth-Science Reviews
  48. Said, N. I., & Syabani, M. R. 2014. Penghilangan amoniak di dalam air limbah domestik dengan proses Moving Bed Biofilm Reactor (MBBR). Jurnal Air Indonesia, 7(1)
  49. Salmin, S. 2005. Oksigen terlarut (DO) dan kebutuhan oksigen biologi (BOD) sebagai salah satu indikator untuk menentukan kualitas perairan. Oseana, 30(3), 21–26
  50. Santoso, A.D. 2018 ‘Keragaan Nilai DO, BOD dan COD di Danau Bekas Tambang Batu Bara’, Jurnal Teknologi Lingkungan, 19(1), pp. 89–96
  51. Sastrawijaya, A. T. 2009. Pencemaran Lingkungan, cet. Ke-2, Jakarta: PT Rineka Cipta
  52. Siregar, S. A. 2005. Instalasi pengolahan air limbah. Kanisius
  53. Tilley, E. et al. 2014 Compendium of Sanitation Systems and Technologies, 2nd edition, Switzerland Eawag, Dübendorf. A
  54. Triyani, R., Oktiawan, W., & Nugraha, W. D. 2013. Masterplan Sistem Pengelolaan Air Limbah Industri Di Kawasan Industri Bsb City, Mijen-semarang. Jurnal Teknik Lingkungan, 2(2), 1–6
  55. Van Lier, J.B., Mahmoud, N. and Zeeman, G. 2008. Anaerobic Wastewater Treatment in Biological Wastewater Treatment: Principles Modelling and Design., pp. 415–456
  56. Wirasatriya, A. 2011. Pola distribusi klorofil-a dan total suspended solid (TSS) di Teluk Toli Toli, Sulawesi. Buletin Oseanografi Marina, 1(1)
  57. Yuningsih, H. D., Anggoro, S., & Soedarsono, P. 2014. Hubungan bahan organik dengan produktivitas perairan pada kawasan tutupan eceng gondok, perairan terbuka dan keramba jaring apung di Rawa Pening Kabupaten Semarang Jawa Tengah. Management of Aquatic Resources Journal (MAQUARES), 3(1), 37–43

Last update:

No citation recorded.

Last update: 2025-01-21 02:38:15

No citation recorded.