skip to main content

Experimental Investigation of by-Product Hydrogen Gas in the Harvesting Process of Dunaliella salina using a Non-Sacrificial Cathode

Purwono Purwono scopus  -  Universitas Diponegoro, Indonesia
*Hadiyanto Hadiyanto  -  Universitas Diponegoro, Indonesia
Marcelinus Christwardana  -  Universitas Diponegoro, Indonesia
Widayat Widayat  -  Universitas Diponegoro, Indonesia
Mochamad Arief Budihardjo  -  Universitas Diponegoro, Indonesia

Citation Format:

Hydrogen gas is considered a pollution-free fuel in the future. However, the EC process using these non-sacrificial electrodes requires further research especially for the production of dissolved hydrogen gas and the efficiency of microalgae harvesting. The purpose of this study was to investigate the concentration of dissolved hydrogen gas produced from the harvesting process of Dunaliella salina microalgae species using EC and ORP concentrations including pH, harvesting efficiency due to voltage variations and harvesting time using EC with non-sacrificial electrodes. D salina harvesting using EC reactor made of cylindrical borosilicate glass. Spiral-shaped type 304 stainless steel (non-sacrificial) serves as the cathode and solid cylindrically-shaped Fe serves as the anode. The voltage set varies between 16, 18, and 20 Volts, while the electrolysis time is varied between 1.3.5 minutes. The results showed that the highest dissolved hydrogen concentration of 820 ppb (0.820 ppm) produced from the EC process used 18 V for 3 minutes. The volume of gas could not be measured because most of the hydrogen gas was dissolved in the D salina culture, so it was not enough to evaporate within 3 minutes. The maximum ORP concentration of -413 mV resulting from the EC process uses 18 V for 3 minutes. When hydrogen gas is present in a solution, it can decrease the ORP value of the solution. At EC time with non-sacrificial electrodes for 5 minutes managed to harvest D salina 50.79%; 61.90%; 74.60% at voltages of 16 V, 18V, and 20 V respectively. 

Fulltext View|Download
Keywords: Electrocoagulation; hydrogen gas; non-sacrificial electrode, Dunaliella salina
Funding: National Research and Innovation Agency based on decree number 93/IV/KS/11/2022 and 652/UN7.D2/KS/XI/2022.

Article Metrics:

Article Info
Section: Original Research Article
Language : EN
  1. Al-Shannag, M., Bani-Melhem, K., Al-Anber, Z., Al-Qodah, Z., 2013. Enhancement of COD-Nutrients Removals and Filterability of Secondary Clarifier Municipal Wastewater Influent Using Electrocoagulation Technique. Separation Science and Technology (Philadelphia) 48, 673–680
  2. Apshankar, K.R., Goel, S., 2018. Review and analysis of defluoridation of drinking water by electrocoagulation. Journal of Water Supply: Research and Technology—AQUA 67, 297–316
  3. Baierle, F., John, D.K., Souza, M.P., Bjerk, T.R., Moraes, M.S.A., Hoeltz, M., Rohlfes, A.L.B., Camargo, M.E., Corbellini, V.A., Schneider, R.C.S., 2015. Biomass from microalgae separation by electroflotation with iron and aluminum spiral electrodes. Chemical Engineering Journal 267, 274–281
  4. Boinpally, S., Kolla, A., Kainthola, J., Kodali, R., Vemuri, J., 2023. A state-of-the-art review of the electrocoagulation technology for wastewater treatment. Water Cycle 4, 26–36
  5. Brennan, L., Owende, P., 2010. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews 14, 557–577
  6. Castellanos-Huerta, I., Gómez-Verduzco, G., Tellez-Isaias, G., Ayora-Talavera, G., Bañuelos-Hernández, B., Petrone-García, V.M., Fernández-Siurob, I., Garcia-Casillas, L.A., Velázquez-Juárez, G., 2022. Dunaliella salina as a Potential Biofactory for Antigens and Vehicle for Mucosal Application. Processes 10, 1–14
  7. Çırak, M., 2018. High-temperature electrocoagulation of colloidal calcareo-argillaceous suspension. Powder Technology 328, 13–25
  8. Das, P.P., Sharma, M., Purkait, M.K., 2022. Recent progress on electrocoagulation process for wastewater treatment: A review. Separation and Purification Technology 292, 121058
  9. de Godos, I., Guzman, H.O., Soto, R., García-Encina, P.A., Becares, E., Muñoz, R., Vargas, V.A., 2011. Coagulation/flocculation-based removal of algal-bacterial biomass from piggery wastewater treatment. Bioresource Technology 102, 923–927
  10. Diamond, W.P., Schatzel, S.J., Garcia, F., Ulery, J.P., Niosh, 2001. the Modified Direct Method: a Solution for Obtaining Accurate Coal Desorption Measurements. Ala. Univ. Et Al. Int. Coalbed Methane Symp. (Tuscaloosa, Al, 5/14-18/2001) Proc. 331–342
  11. Dukić, A., Firak, M., 2011. Hydrogen production using alkaline electrolyzer and photovoltaic (PV) module. International Journal of Hydrogen Energy 36, 7799–7806
  12. Ghernaout, D., 2019. Electrocoagulation Process for Microalgal Biotechnology-A Review. Djamel Ghernaout. Electrocoagulation Process for Microalgal Biotechnology-A Review. Applied Engineering 3, 85–94
  13. Ghernaout, D., Benblidia, C., Khemici, F., 2015. Microalgae removal from Ghrib Dam (Ain Defla, Algeria) water by electroflotation using stainless steel electrodes. Desalination and Water Treatment 54, 3328–3337
  14. Landels, A., Beacham, T.A., Evans, C.T., Carnovale, G., Raikova, S., Cole, I.S., Goddard, P., Chuck, C., Allen, M.J., 2019. Improving electrocoagulation floatation for harvesting microalgae. Algal Research 39
  15. Laraib, N., Hussain, A., Javid, A., Noor, T., Ahmad, Q.-A., Chaudhary, A., Manzoor, M., Akmal, M., Bukhari, S.M., Ali, W., Choi, T.J., Schenk, P.M., 2022. Recent trends in microalgal harvesting: an overview. Environment, Development and Sustainability 24, 8691–8721
  16. Li, W., Zhang, Y., Hu, Y., Luo, S., Wu, X., Liu, Y., Min, A., Ruan, R., 2022. Harvesting Chlorella vulgaris by electro-flotation with stainless steel cathode and non-sacrificial anode. Bioresource Technology 363, 127961
  17. Liu, Q., Zhang, M., Lv, T., Chen, H., Chika, A.O., Xiang, C., Guo, M., Wu, M., Li, J., Jia, L., 2017. Energy-producing electro-flocculation for harvest of Dunaliella salina. Bioresource Technology 241, 1022–1026
  18. Lu, L., Yang, G., Zhu, B., Pan, K., 2017. A comparative study on three quantitating methods of microalgal biomass. Indian Journal of Geo-Marine Sciences 46, 2265–2272
  19. Lucakova, S., Branyikova, I., Kovacikova, S., Pivokonsky, M., Filipenska, M., Branyik, T., Ruzicka, M.C., 2021. Electrocoagulation reduces harvesting costs for microalgae. Bioresource Technology 323
  20. Mahmood, A., Hwan Kim, J., Park, J.W., 2021. Application of metal-air fuel cell electrocoagulation for the harvesting of Nannochloropsis salina marine microalgae. Renewable Energy 171, 1224–1235
  21. Maleki, H.M., Almassi, M., Nasirian, N., 2020. Optimization of Microalgae Harvesting and Separation Process by Electrical Coagulation in Biodiesel Production Cycle Using Response Surface Methodology. Journal of Agricultural Engineering Soil Science and Agricultural Mechanization, (Scientific Journal of Agriculture) 43, 425–440
  22. Molecular Hydrogen Institute, 2023. Concentration and Solubility of H2 [WWW Document]. Molecular Hydrogen Institute. URL (accessed 7.2.23)
  23. Nguyen, T.D.P., Le, T.V.A., Show, P.L., Nguyen, T.T., Tran, M.H., Tran, T.N.T., Lee, S.Y., 2019. Bioflocculation formation of microalgae-bacteria in enhancing microalgae harvesting and nutrient removal from wastewater effluent. Bioresource Technology 272, 34–39
  24. Phiri, J.T., Pak, H., We, J., Oh, S., 2021. Evaluation of Pb, Mg, Al, Zn, and Cu as electrode materials in the electrocoagulation of microalgae. Processes 9
  25. Podyacheva, E., Afanasyev, O.I., Ostrovskii, V.S., Chusov, D., 2022. Syngas Instead of Hydrogen Gas as a Reducing Agent─ A Strategy To Improve the Selectivity and Efficiency of Organometallic Catalysts. ACS Catalysis 12, 5145–5154
  26. Rahmani, A., Zerrouki, D., Djafer, L., Ayral, A., 2017. Hydrogen recovery from the photovoltaic electroflocculation-flotation process for harvesting Chlorella pyrenoidosa microalgae. International Journal of Hydrogen Energy 42, 19591–19596
  27. Rahul S, M., MA, S., CS, S., P, V., I, G.M., 2021. Insights about sustainable biodiesel production from microalgae biomass: a review. International Journal of Energy Research 45, 17028–17056
  28. Safwat, S.M., 2020. Treatment of real printing wastewater using electrocoagulation process with titanium and zinc electrodes. Journal of Water Process Engineering 34
  29. Singh, V., Das, D., 2018. Potential of hydrogen production from biomass. In: de Miranda, P.E.V.B.T.-S. and E. of H.-B.E.T. (Ed.), Science and Engineering of Hydrogen-Based Energy Technologies: Hydrogen Production and Practical Applications in Energy Generation. Academic Press, pp. 123–164
  30. Slamet, S., Kurniawan, R., 2018. Degradation of tartrazine and hydrogen production simultaneously with combination of photocatalysis-electrocoagulation. In: AIP Conference Proceedings. AIP Publishing LLC, p. 20064
  31. Sudrajat, A., Nugroho, I., Lestari, K.R., Repi, V.V.R., 2020. Pengaruh Penambahan Gas HHO pada Mesin Bensin Terhadap Emisi dan Konsumsi Bahan Bakar. Jurnal Ilmiah Giga 23, 8
  32. Sugiyono, 2013. Metode penelitian manajemen, 5th ed. Badan Penerbit Universitas Diponegoro, Semarang
  33. Suslow, T. V, 2004. Oxidation-Reduction Potential (ORP) for Water Disinfection Monitoring, Control, and Documentation. Oxidation-Reduction Potential (ORP) for Water Disinfection Monitoring, Control, and Documentation
  34. Vandamme, D., Pontes, S.C.V., Goiris, K., Foubert, I., Pinoy, L.J.J., Muylaert, K., 2011a. Evaluation of electro-coagulation-flocculation for harvesting marine and freshwater microalgae. Biotechnology and Bioengineering 108, 2320–2329
  35. Vandamme, D., Pontes, S.C.V., Goiris, K., Foubert, I., Pinoy, L.J.J., Muylaert, K., 2011b. Evaluation of electro-coagulation-flocculation for harvesting marine and freshwater microalgae. Biotechnology and Bioengineering 108, 2320–2329

Last update:

No citation recorded.

Last update: 2024-05-18 11:40:40

No citation recorded.