skip to main content

Groundwater Potential of the Jakarta Groundwater Basin using the Darcy Equation Method

Imsak Aditya Respati Priyono  -  Universitas Diponegoro, Indonesia
Thomas Triadi Putranto  -  Universitas Diponegoro, Indonesia
*Taat Setiawan  -  Ministry of Energy and Mineral Resources, Indonesia

Citation Format:
Abstract

The annual increase in population leads to a growing demand for water. To control groundwater utilization in a directed manner is to extract groundwater according to groundwater potential. The research aims to analyze the groundwater potential in the Jakarta Groundwater Basin in terms of quantity and quality. The method used is primary data analysis by determining quantity potential using the Darcy equation method with additional calculations of groundwater volume and quality potential based on drinking water quality standards from the Republic of Indonesia Minister of Health Regulation no. 2 of 2023 and WHO of 2022. The dynamic potential for unconfined aquifers ranges from 2,663–1,372,901 m³/year, while for confined aquifers range from 184,991–1,895,288 m³/year. The static potential for unconfined aquifers ranges from 266,852–3,252,654 m³, while for confined aquifers ranges from 1,317,862–30,620,266 m³. Based on groundwater quality standards for drinking water from the Minister of Health and WHO for the parameters pH, TDS, Na⁺, Cl⁻, SO₄²⁻ and NO₃⁻, there are 15 samples from 53 samples of unconfined aquifer and 36 samples from 75 samples of confined aquifer that meet standards.

Fulltext View|Download
Keywords: Groundwater; Jakarta groundwater basin; potential; quantity; quality

Article Metrics:

  1. Adji, T. N., E. Nurjani, and D. Wicaksono. 2014. Zonasi potensi airtanah dengan menggunakan beberapa parameter lapangan dan pendekatan sig di daerah kepesisiran. Laporan Akhir Penelitian Hibah Sekolah Vokasi UGM, 2014. Yogyakarta: UGM
  2. Ambarwati, N. V. 2022. Ketersediaan air di cekungan air tanah (CAT) jakarta berdasarkan analisis neraca air dengan metode F. J. Mock, (Skripsi). Depok: Universitas Indonesia
  3. Anna, A. N. 1993. Kondisi air tanah di daerah perkotaan: problema antara kuantitas dan kualitas air. Forum Geografi, 7(1), 49–63
  4. Arifiyanto, B., and T. N. Adji. 2015. Karakteristik dan potensi akuifer bebas di cekungan air tanah (CAT) Wates, Kabupaten Kulon Progo. Jurnal Bumi Indonesia, 4(4), 1–10
  5. Badan Pusat Statistik Provinsi DKI Jakarta. 2021. Provinsi DKI Jakarta dalam Angka 2021. Jakarta: Badan Pusat Statistik Provinsi DKI Jakarta
  6. Freeze, R. A., and J. A. Cherry. 1979. Groundwater. Englewood Cliffs, NJ: Prentice-Hall
  7. Heath, R.C. 1983. Basic Ground-Water Hydrology. Washington. DC: US Government Print. Office
  8. Karunia, T. U., and M. F. Ikhwali. 2021. Effects of population and land-use change on water balance in DKI Jakarta. IOP Conference Series: Earth and Environmental Science, 622(1), 1–15
  9. Krasny, J. 1993. Classification of transmissivity magnitude and variation. Groundwater, 31(2), 230–236
  10. Kumar, C. P. 2013. Assessment and strategies for development potential of deeper confined Aquifers in India. Asian Academic Research Journal of Multidisciplinary , 1(8), 247-258
  11. Matahelumual, B. C. 2010. Kajian kondisi air tanah jakarta tahun 2010, Jurnal Lingkungan dan Bencana Geologi, 1(3), 131–149
  12. Republik Indonesia. 2023. Peraturan Menteri Kesehatan Nomor 2 Tahun 2023 tentang Peraturan Pelaksanaan Peraturan Pemerintah Nomor 66 Tahun 2014 tentang Kesehatan Lingkungan. Jakarta: Kementerian Kesehatan Republik Indonesia
  13. Pangestu, P., and R. S. B. Waspodo. 2019. Prediksi potensi cadangan air tanah menggunakan persamaan darcy di kecamatan dramaga, Kabupaten Bogor. Jurnal Teknik Sipil dan Lingkungan, 4(1), 59-68
  14. Samsuhadi. 2009. Pemanfaatan Air Tanah Jakarta, Jurnal Air Indonesia, 5(1), 9–22
  15. Sawyer, C. N., P. L. McCarty, and G. F. Parkin. 2003. Chemistry for environmental engineering and science. New York: McGraw-Hill
  16. Seizarwati, W., D. Prasetya, M. Syahidah, and H. Rengganis. 2018. simulasi aliran air tanah jakarta dengan beberapa skenario menggunakan IMOD. Jurnal Sumber Daya Air, 14(2), 97–110
  17. Seizarwati, W., H. Rengganis, and M. Syahidah. 2017. Penurunan kapasitas imbuhan air tanah cat jakarta menggunakan metode neraca air untuk daerah urban. RISET Geologi dan Pertambangan, 27(1), 27–37
  18. Shirazi, S. M., M. I. Adham, N. H. Zardari, Z. Ismail, H. M. Imran, and M. A. Mangrio. 2015. Groundwater quality and hydrogeological characteristics of malacca state in malaysia. Journal of Water and Land Development, 24(I–III), 11–19
  19. Sudaryanto, S., and D. Suherman. 2008. Degradasi kualitas airtanah berdasarkan kandungan nitrat di cekungan airtanah jakarta. Riset Geologi dan Pertambangan-Geology and Mining Research, 18(2), 61–68
  20. Suherman, D., and S. Sudaryanto. 2009. Tipe air untuk penentuan aliran airtanah vertikal di cekungan jakarta. RISET Geologi dan Pertambangan, 19(2), 99–108
  21. Todd, D. K., and L. W. Mays. 2005. Groundwater Hydrology. New York: John Wiley & Sons
  22. Torres-Martínez, J. A., A. Mora, P. S. Knappett, N. Ornelas-Soto, and J. Mahlknecht. 2020. Tracking nitrate and sulfate sources in groundwater of an urbanized valley using a multi-tracer approach combined with a bayesian isotope mixing model. Water Research, 182, 1–16
  23. World Health Organization. 2022. Guidelines for drinking-water quality: fourth edition incorporating the first and second addenda. Geneva: World Health Organization
  24. Zhang, B., Zeng, F., Wei, X., Khan, U., & Zou, Y., 2022. Three-dimensional hierarchical hydrogeological static modeling for groundwater resource assessment: a case study in the eastern henan plain, China. Water, 14(10), 1651, 1–26

Last update:

No citation recorded.

Last update: 2024-12-05 06:32:17

No citation recorded.