skip to main content

Phytoremediation as a Sustainable Solution for Mercury Contamination in Artisanal Gold Mining Sites: Insights from ASGM in South Lampung, Indonesia

*Muhammad Akbari Danasla  -  Institut Teknologi Sumatera, Indonesia
Chyndy Anjelita  -  Institut Teknologi Sumatera, Indonesia
Rizqi Arbi Julyanto  -  Institut Teknologi Sumatera, Indonesia

Citation Format:
Abstract
Artisanal and small-scale gold mining (ASGM) significantly contributes to mercury contamination, posing severe environmental and health risks due to improper disposal and release of mercury into soil and water. This study investigates the potential of phytoremediation as a sustainable solution to mitigate mercury contamination at an ASGM site in XYZ Village, Katibung Subdistrict, South Lampung Regency, Indonesia. Initial assessments revealed mercury concentrations of 0.367 mg/L in water and 74.8215 mg/kg in soil, exceeding national regulatory limits. Phytoremediation trials were conducted using Eichhornia crassipes (water hyacinth), Pistia stratiotes L. (water lettuce), and Cyperus rotundus (nutsedge) under controlled conditions. Water hyacinth demonstrated 100% mercury removal efficiency in water within nine days, while nutsedge reduced mercury levels in soil by 61.8% over 21 days. Combined treatments of water hyacinth and water lettuce further enhanced mercury removal in water samples. The results highlight phytoremediation as an effective, low-cost, and eco-friendly strategy for rehabilitating mercury-contaminated environments. Future research should focus on optimizing phytoremediation techniques and integrating them into community-based environmental management programs.
Fulltext View|Download
Keywords: phytoremediation; ASGM; soil pollution; mercury contamination; environmental degradation

Article Metrics:

  1. Abd Ali, Z. T., Naji, L. A., Almuktar, S. A. A. A. N., Faisal, A. A. H., Abed, S. N., Scholz, M., Naushad, Mu., & Ahamad, T. (2020). Predominant mechanisms for the removal of nickel metal ion from aqueous solution using cement kiln dust. Journal of Water Process Engineering, 33, 101033. https://doi.org/10.1016/j.jwpe.2019.101033
  2. Ali, M. H., Muzaffar, A., Khan, M. I., Farooq, Q., Tanvir, M. A., Dawood, M., & Hussain, M. I. (2024). Microbes-assisted phytoremediation of lead and petroleum hydrocarbons contaminated water by water hyacinth. International Journal of Phytoremediation, 26(3), 405–415. https://doi.org/10.1080/15226514.2023.2245905
  3. Ali, S., Abbas, Z., Rizwan, M., Zaheer, I., Yavaş, İ., Ünay, A., Abdel-DAIM, M., Bin-Jumah, M., Hasanuzzaman, M., & Kalderis, D. (2020). Application of Floating Aquatic Plants in Phytoremediation of Heavy Metals Polluted Water: A Review. Sustainability, 12(5), 1927. https://doi.org/10.3390/su12051927
  4. Appleton, J. D., Weeks, J. M., Calvez, J. P. S., & Beinhoff, C. (2006). Impacts of mercury contaminated mining waste on soil quality, crops, bivalves, and fish in the Naboc River area, Mindanao, Philippines. Science of The Total Environment, 354(2–3), 198–211. https://doi.org/10.1016/j.scitotenv.2005.01.042
  5. Bakshe, P., & Jugade, R. (2023). Phytostabilization and rhizofiltration of toxic heavy metals by heavy metal accumulator plants for sustainable management of contaminated industrial sites: A comprehensive review. Journal of Hazardous Materials Advances, 10, 100293. https://doi.org/10.1016/j.hazadv.2023.100293
  6. Chattopadhyay, S., Fimmen, R. L., Yates, B. J., Lal, V., & Randall, P. (2012). Phytoremediation of Mercury- and Methyl Mercury-Contaminated Sediments by Water Hyacinth ( Eichhornia crassipes ). International Journal of Phytoremediation, 14(2), 142–161. https://doi.org/10.1080/15226514.2010.525557
  7. Cobbett, C. S. (2000). Phytochelatins and Their Roles in Heavy Metal Detoxification. Plant Physiology, 123(3), 825–832. https://doi.org/10.1104/pp.123.3.825
  8. Cordy, P., Veiga, M., Crawford, B., Garcia, O., Gonzalez, V., Moraga, D., Roeser, M., & Wip, D. (2013). Characterization, mapping, and mitigation of mercury vapour emissions from artisanal mining gold shops. Environmental Research, 125, 82–91. https://doi.org/10.1016/j.envres.2012.10.015
  9. Dong, W., Bian, Y., Liang, L., & Gu, B. (2011). Binding Constants of Mercury and Dissolved Organic Matter Determined by a Modified Ion Exchange Technique. Environmental Science & Technology, 45(8), 3576–3583. https://doi.org/10.1021/es104207g
  10. Georgin, J., Franco, D. S. P., Dehmani, Y., Nguyen-Tri, P., & El Messaoudi, N. (2024). Current status of advancement in remediation technologies for the toxic metal mercury in the environment: A critical review. Science of The Total Environment, 947, 174501. https://doi.org/10.1016/j.scitotenv.2024.174501
  11. Gibb, H., & O’Leary, K. G. (2014). Mercury Exposure and Health Impacts among Individuals in the Artisanal and Small-Scale Gold Mining Community: A Comprehensive Review. Environmental Health Perspectives, 122(7), 667–672. https://doi.org/10.1289/ehp.1307864
  12. Gusti Wibowo, Y., Tyaz Nugraha, A., & Rohman, A. (2023). Phytoremediation of several wastewater sources using Pistia stratiotes and Eichhornia crassipes in Indonesia. Environmental Nanotechnology, Monitoring & Management, 20, 100781. https://doi.org/10.1016/j.enmm.2023.100781
  13. Imron, M. F., Firdaus, A. A. F., Flowerainsyah, Z. O., Rosyidah, D., Fitriani, N., Kurniawan, S. B., Abdullah, S. R. S., Hasan, H. A., & Wibowo, Y. G. (2023). Phytotechnology for domestic wastewater treatment: Performance of Pistia stratiotes in eradicating pollutants and future prospects. Journal of Water Process Engineering, 51, 103429. https://doi.org/10.1016/j.jwpe.2022.103429
  14. Kamal, M. (2004). Phytoaccumulation of heavy metals by aquatic plants. Environment International, 29(8), 1029–1039. https://doi.org/10.1016/S0160-4120(03)00091-6
  15. Khandare, R. V., Watharkar, A. D., Pawar, P. K., Jagtap, A. A., & Desai, N. S. (2021). Hydrophytic plants Canna indica, Epipremnum aureum, Cyperus alternifolius and Cyperus rotundus for phytoremediation of fluoride from water. Environmental Technology & Innovation, 21, 101234. https://doi.org/10.1016/j.eti.2020.101234
  16. Kumari, S., Amit, Jamwal, R., Mishra, N., & Singh, D. K. (2020). Recent developments in environmental mercury bioremediation and its toxicity: A review. Environmental Nanotechnology, Monitoring & Management, 13, 100283. https://doi.org/10.1016/j.enmm.2020.100283
  17. Lenka, M., Das, B. L., Panda, K. K., & Panda, B. B. (1993). Mercury-tolerance ofChloris barbata Sw. andCyperus rotundus L. isolated from contaminated sites. Biologia Plantarum, 35(3), 443–446. https://doi.org/10.1007/BF02928524
  18. Meutia, A. A., Lumowa, R., & Sakakibara, M. (2022). Indonesian Artisanal and Small-Scale Gold Mining—A Narrative Literature Review. International Journal of Environmental Reasearch and Public Health, 19. https://doi.org/10.3390/ijerph19073955
  19. Naswir, M., Jalius, J., Natalia, D., Arita, S., & Wibowo, Y. G. (2021). Adsorption of Mercury Using Different Types of Activated Bentonite: A Study of Sorption, Kinetics, and Isotherm Models. Jurnal Rekayasa Kimia & Lingkungan, 15(2), 123–131. https://doi.org/10.23955/rkl.v15i2.17784
  20. Ngatijo, N., Permatasari, D. I., Farid, F., Bemis, R., Heriyanti, H., Basuki, R., & Wibowo, Y. G. (2021). Decontamination of Mercury from Mined Soil using Magnetite Functionalized Quaternary Ammonium Silica (Fe3O4/SAK). Jurnal Presipitasi : Media Komunikasi Dan Pengembangan Teknik Lingkungan, 18(1), 88–98. https://doi.org/10.14710/presipitasi.v18i1.88-98
  21. Niane, B., Guédron, S., Feder, F., Legros, S., Ngom, P. M., & Moritz, R. (2019). Impact of recent artisanal small-scale gold mining in Senegal: Mercury and methylmercury contamination of terrestrial and aquatic ecosystems. Science of The Total Environment, 669, 185–193. https://doi.org/10.1016/j.scitotenv.2019.03.108
  22. Nurul Muddarisna, N. M. (2013). The potential of wild plants for phytoremediation of soil contaminated with mercury of gold cyanidation tailings. IOSR Journal of Environmental Science, Toxicology and Food Technology, 4(1), 15–19. https://doi.org/10.9790/2402-0411519
  23. Odukoya, A. M., Uruowhe, B., Watts, M. J., Hamilton, E. M., Marriott, A. L., Alo, B., & Anene, N. C. (2022). Assessment of bioaccessibility and health risk of mercury within soil of artisanal gold mine sites, Niger, North-central part of Nigeria. Environmental Geochemistry and Health, 44(3), 893–909. https://doi.org/10.1007/s10653-021-00991-2
  24. Odumo, B. O., Carbonell, G., Angeyo, H. K., Patel, J. P., Torrijos, M., & Rodríguez Martín, J. A. (2014). Impact of gold mining associated with mercury contamination in soil, biota sediments and tailings in Kenya. Environmental Science and Pollution Research, 21(21), 12426–12435. https://doi.org/10.1007/s11356-014-3190-3
  25. Pavilonis, B., Grassman, J., Johnson, G., Diaz, Y., & Caravanos, J. (2017). Characterization and risk of exposure to elements from artisanal gold mining operations in the Bolivian Andes. Environmental Research, 154, 1–9. https://doi.org/10.1016/j.envres.2016.12.010
  26. Prochácková, T., Góra, R., Kandráč, J., & Hutta, M. (1998). Distribution of mercury in soil organic matter fractions obtained by dissolution/precipitation method. Journal of Radioanalytical and Nuclear Chemistry, 229(1–2), 61–65. https://doi.org/10.1007/BF02389447
  27. Qin, H., Zhang, Z., Liu, M., Liu, H., Wang, Y., Wen, X., Zhang, Y., & Yan, S. (2016). Site test of phytoremediation of an open pond contaminated with domestic sewage using water hyacinth and water lettuce. Ecological Engineering, 95, 753–762. https://doi.org/10.1016/j.ecoleng.2016.07.022
  28. Rai, P. K. (2019). Heavy metals/metalloids remediation from wastewater using free floating macrophytes of a natural wetland. Environmental Technology & Innovation, 15, 100393. https://doi.org/10.1016/j.eti.2019.100393
  29. Ramadan, B. S., Wibowo, Y. G., Anwar, D., & Maryani, A. T. (2024). A Review of Life Cycle Assessment of Nanomaterials-Based Adsorbent for Environmental Remediation. Global NEST Journal, 1–18. https://doi.org/10.30955/gnj.06216
  30. Ramadan, B. S., Wulandari, M., Wibowo, Y. G., Ikhlas, N., & Nurseta, D. Y. (2021). Removing Ionic and Nonionic Pollutants from Soil, Sludge, and Sediment Using Ultrasound‐Assisted Electrokinetic Treatment. In A. B. Ribeiro & M. N. Vara Prasad (Eds.), Electrokinetic Remediation for Environmental Security and Sustainability (1st ed., pp. 653–677). Wiley. https://doi.org/10.1002/9781119670186.ch26
  31. Rasmussen, L. D., Sørensen, S. J., Turner, R. R., & Barkay, T. (2000). Application of a mer-lux biosensor for estimating bioavailable mercury in soil. Soil Biology and Biochemistry, 32(5), 639–646. https://doi.org/10.1016/S0038-0717(99)00190-X
  32. Rezania, S., Ponraj, M., Talaiekhozani, A., Mohamad, S. E., Md Din, M. F., Taib, S. M., Sabbagh, F., & Sairan, F. M. (2015). Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. Journal of Environmental Management, 163, 125–133. https://doi.org/10.1016/j.jenvman.2015.08.018
  33. Riddle, S. G., Tran, H. H., Dewitt, J. G., & Andrews, J. C. (2002). Field, Laboratory, and X-ray Absorption Spectroscopic Studies of Mercury Accumulation by Water Hyacinths. Environmental Science & Technology, 36(9), 1965–1970. https://doi.org/10.1021/es010603q
  34. Rosanti, D., Wibowo, Y. G., Safri, M., Maryani, A. T., & Ramadhan, B. S. (2020). Bioremediations Technologies on Wastewater Treatment: Opportunities, Challenges and Economic Perspective. Sainmatika: Jurnal Ilmiah Matematika Dan Ilmu Pengetahuan Alam, 17(2), 142. https://doi.org/10.31851/sainmatika.v17i2.5085
  35. Soe, P. S., Kyaw, W. T., Arizono, K., Ishibashi, Y., & Agusa, T. (2022). Mercury Pollution from Artisanal and Small-Scale Gold Mining in Myanmar and Other Southeast Asian Countries. International Journal of Environmental Research and Public Health, 19(10), 6290. https://doi.org/10.3390/ijerph19106290
  36. Teixeira, R. A., Pereira, W. V. D. S., Souza, E. S. D., Ramos, S. J., Dias, Y. N., Lima, M. W. D., De Souza Neto, H. F., Oliveira, E. S. D., & Fernandes, A. R. (2021). Artisanal gold mining in the eastern Amazon: Environmental and human health risks of mercury from different mining methods. Chemosphere, 284, 131220. https://doi.org/10.1016/j.chemosphere.2021.131220
  37. Wang, J., Feng, X., Anderson, C. W. N., Xing, Y., & Shang, L. (2012). Remediation of mercury contaminated sites – A review. Journal of Hazardous Materials, 221–222, 1–18. https://doi.org/10.1016/j.jhazmat.2012.04.035
  38. Wibowo, Y. G., Lululangin, B. R. G., Safitri, H., Rohman, A., Sudibyo, Priyanto, S., Syarifuddin, H., Tatik Maryani, A., Tawfiqurahman Yuliansyah, A., Kurniawan, A., Nur’ani, H., Tsabitah, N., Taher, T., & Petrus, H. T. B. M. (2023). Rapid and highly efficient adsorption of dye and heavy metal on low-cost adsorbent derived from human feces and Chlorella vulgaris. Environmental Nanotechnology, Monitoring & Management, 20, 100905. https://doi.org/10.1016/j.enmm.2023.100905
  39. Wibowo, Y. G., & Ramadan, B. S. (2021). Enhanced Remediation and Recovery of Metal‐Contaminated Soil Using Electrokinetic Soil Flushing. In A. B. Ribeiro & M. N. Vara Prasad (Eds.), Electrokinetic Remediation for Environmental Security and Sustainability (1st ed., pp. 603–627). Wiley. https://doi.org/10.1002/9781119670186.ch24
  40. Wibowo, Y. G., Ramadan, B. S., Sudibyo, S., Safitri, H., Rohman, A., & Syarifuddin, H. (2023). Efficient remediation of acid mine drainage through sustainable and economical biochar-CaO composite derived from solid waste. Environment, Development and Sustainability, 26(7), 16803–16826. https://doi.org/10.1007/s10668-023-03311-z
  41. Wibowo, Y. G., Ramadan, B. S., Taher, T., & Khairurrijal, K. (2023). Advancements of Nanotechnology and Nanomaterials in Environmental and Human Protection for Combatting the COVID-19 During and Post-pandemic Era: A Comprehensive Scientific Review. Biomedical Materials & Devices. https://doi.org/10.1007/s44174-023-00086-9
  42. Wibowo, Y. G., Ramadan, B. S., Universitas Diponegoro, Maryani, A. T., Universitas Jambi, Rosarina, D., Universitas Muhammadiyah Tangerang, Arkham, L. O., & Institut Teknologi Sumatera. (2022). Impact of illegal gold mining in Jambi, Indonesia. Indonesian Mining Journal, 25(1), 29–40. https://doi.org/10.30556/imj.Vol25.No1.2022.1271
  43. Wibowo, Y. G., Safitri, H., Ramadan, B. S., & Sudibyo. (2022). Adsorption test using ultra-fine materials on heavy metals removal. Bioresource Technology Reports, 19, 101149. https://doi.org/10.1016/j.biteb.2022.101149
  44. Wibowo, Y. G., Sudibyo, Naswir, M., & Ramadan, B. S. (2022). Performance of a novel biochar-clamshell composite for real acid mine drainage treatment. Bioresource Technology Reports, 17, 100993. https://doi.org/10.1016/j.biteb.2022.100993
  45. Wibowo, Y. G., Wijaya, C., Yudhoyono, A., Sudibyo, Yuliansyah, A. T., Safitri, H., Tsabitah, N., Nur’ani, H., Khairurrijal, K., & Petrus, H. T. B. M. (2023). Highly Efficient Modified Constructed Wetlands Using Waste Materials for Natural Acid Mine Drainage Treatment. Sustainability, 15(20), 14869. https://doi.org/10.3390/su152014869
  46. Zhang, A., Li, X., Xing, J., & Xu, G. (2020). Adsorption of potentially toxic elements in water by modified biochar: A review. Journal of Environmental Chemical Engineering, 8(4), 104196. https://doi.org/10.1016/j.jece.2020.104196

Last update:

No citation recorded.

Last update: 2025-04-23 17:52:10

No citation recorded.