skip to main content

Phytoremediation as a Sustainable Solution for Mercury Contamination in Artisanal Gold Mining Sites: Insights from ASGM in South Lampung, Indonesia

*Muhammad Akbari Danasla  -  Institut Teknologi Sumatera, Indonesia
Chyndy Anjelita  -  Institut Teknologi Sumatera, Indonesia
Rizqi Arbi Julyanto  -  Institut Teknologi Sumatera, Indonesia

Citation Format:
Abstract
Artisanal and small-scale gold mining (ASGM) contributes significantly to mercury contamination, posing severe environmental and health risks due to the improper disposal and release of mercury into soil and water. This study investigated the potential of phytoremediation as a sustainable solution for mitigating mercury contamination at an ASGM site in XYZ Village, Katibung Subdistrict, South Lampung Regency, Indonesia.  Water and soil samples were collected from the field, and the study was conducted on a laboratory scale. Initial assessments revealed mercury concentrations of 0.367 mg/L in water and 74.8215 mg/kg in soil, both exceeding national regulatory limits. Phytoremediation trials were conducted using Eichhornia crassipes (water hyacinth), Pistia stratiotes L. (water lettuce), and Cyperus rotundus (nutgrass) under controlled conditions. Water hyacinth demonstrated 100% mercury removal efficiency in water within nine days, whereas nutsedge reduced mercury levels in soil by 61.8% over 21 days. The combined treatment of water hyacinth and water lettuce further enhanced mercury removal in the water samples. The results highlight phytoremediation as an effective, low-cost, and eco-friendly strategy for the rehabilitation of mercury-contaminated environments. This can be implemented in other places with similar conditions. Future research should focus on optimizing phytoremediation techniques and integrating them into community-based environmental management.
Fulltext View|Download
Keywords: Phytoremediation; ASGM; soil pollution; mercury contamination; environmental degradation

Article Metrics:

Article Info
Section: Regional Case Study
Language : ID
  1. Abd Ali, Z.T., Naji, L.A., Almuktar, S.A.A.A.N., Faisal, A.A.H., Abed, S.N., Scholz, M., Naushad, Mu. and Ahamad, T., 2020. Predominant mechanisms for the removal of nickel metal ion from aqueous solution using cement kiln dust. Journal of water process engineering, 33, p.101033
  2. Ali, M.H., Muzaffar, A., Khan, M.I., Farooq, Q., Tanvir, M.A., Dawood, M. and Hussain, M.I., 2024. Microbes-assisted phytoremediation of lead and petroleum hydrocarbons contaminated water by water hyacinth. International journal of phytoremediation, 26(3), pp.405–415
  3. Ali, S., Abbas, Z., Rizwan, M., Zaheer, I., Yavaş, İ., Ünay, A., Abdel-DAIM, M., Bin-Jumah, M., Hasanuzzaman, M. and Kalderis, D., 2020. Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review. Sustainability, 12(5), p.1927
  4. Appleton, J.D., Weeks, J.M., Calvez, J.P.S. and Beinhoff, C., 2006. Impacts of mercury contaminated mining waste on soil quality, crops, bivalves, and fish in the Naboc River area, Mindanao, Philippines. Science of the total environment, 354(2–3), pp.198–211
  5. Bakshe, P. and Jugade, R., 2023. Phytostabilization and rhizofiltration of toxic heavy metals by heavy metal accumulator plants for sustainable management of contaminated industrial sites: A comprehensive review. Journal of hazardous materials advances, 10, p.100293
  6. Chattopadhyay, S., Fimmen, R.L., Yates, B.J., Lal, V. and Randall, P., 2012. Phytoremediation of mercury- and methyl mercury-contaminated sediments by water hyacinth (Eichhornia crassipes). International journal of phytoremediation, 14(2), pp.142–161
  7. Cobbett, C.S., 2000. Phytochelatins and their roles in heavy metal detoxification. Plant physiology, 123(3), pp.825–832
  8. Cordy, P., Veiga, M., Crawford, B., Garcia, O., Gonzalez, V., Moraga, D., Roeser, M. and Wip, D., 2013. Characterization, mapping, and mitigation of mercury vapour emissions from artisanal mining gold shops. Environmental research, 125, pp.82–91
  9. Dong, W., Bian, Y., Liang, L. and Gu, B., 2011. Binding constants of mercury and dissolved organic matter determined by a modified ion exchange technique. Environmental science & technology, 45(8), pp.3576–3583
  10. Fajri, D.N., Suparmin, and Budiono, Z., 2019. Pengaruh variasi biomassa tanaman Kangkung Air (Ipomoea Aquatica) dalam menurunkan kadar merkuri (hg) di limbah cair penambangan emas. Buletin Keslingmas, 38(3), p.285-296
  11. Georgin, J., Franco, D.S.P., Dehmani, Y., Nguyen-Tri, P. and El Messaoudi, N., 2024. Current status of advancement in remediation technologies for the toxic metal mercury in the environment: A critical review. Science of the total environment, 947, p.174501
  12. Gibb, H. and O’Leary, K.G., 2014. Mercury exposure and health impacts among individuals in the artisanal and small-scale gold mining community: A comprehensive review. Environmental health perspectives, 122(7), pp.667–672
  13. Imron, M.F., Firdaus, A.A.F., Flowerainsyah, Z.O., Rosyidah, D., Fitriani, N., Kurniawan, S.B., Abdullah, S.R.S., Hasan, H.A. and Wibowo, Y.G., 2023. Phytotechnology for domestic wastewater treatment: Performance of Pistia stratiotes in eradicating pollutants and future prospects. Journal of water process engineering, 51, p.103429
  14. Kamal, M., 2004. Phytoaccumulation of heavy metals by aquatic plants. Environment international, 29(8), pp.1029–1039
  15. Khandare, R.V., Watharkar, A.D., Pawar, P.K., Jagtap, A.A. and Desai, N.S., 2021. Hydrophytic plants Canna indica, Epipremnum aureum, Cyperus alternifolius and Cyperus rotundus for phytoremediation of fluoride from water. Environmental technology & innovation, 21, p.101234
  16. Kumari, S., Amit, Jamwal, R., Mishra, N. and Singh, D.K., 2020. Recent developments in environmental mercury bioremediation and its toxicity: A review. Environmental nanotechnology, monitoring & management, 13, p.100283
  17. Lenka, M., Das, B.L., Panda, K.K. and Panda, B.B., 1993. Mercury-tolerance of Chloris barbata Sw. and Cyperus rotundus L. isolated from contaminated sites. Biologia plantarum, 35(3), pp.443–446
  18. Meutia, A.A., Lumowa, R. and Sakakibara, M., 2022. Indonesian artisanal and small-scale gold mining—A narrative literature review. International journal of environmental research and public health, 19
  19. Naswir, M., Jalius, J., Natalia, D., Arita, S. and Wibowo, Y.G., 2021. Adsorption of mercury using different types of activated bentonite: A study of sorption, kinetics, and isotherm models. Jurnal rekayasa kimia & lingkungan, 15(2), pp.123–131
  20. Ngatijo, N., Permatasari, D.I., Farid, F., Bemis, R., Heriyanti, H., Basuki, R. and Wibowo, Y.G., 2021. Decontamination of mercury from mined soil using magnetite functionalized quaternary ammonium silica (Fe3O4/SAK). Jurnal presipitasi: Media komunikasi dan pengembangan teknik lingkungan, 18(1), pp.88–98
  21. Niane, B., Guédron, S., Feder, F., Legros, S., Ngom, P.M. and Moritz, R., 2019. Impact of recent artisanal small-scale gold mining in Senegal: Mercury and methylmercury contamination of terrestrial and aquatic ecosystems. Science of the total environment, 669, pp.185–193
  22. Nurul Muddarisna, N.M., 2013. The potential of wild plants for phytoremediation of soil contaminated with mercury of gold cyanidation tailings. IOSR journal of environmental science, toxicology and food technology, 4(1), pp.15–19
  23. Odukoya, A.M., Uruowhe, B., Watts, M.J., Hamilton, E.M., Marriott, A.L., Alo, B. and Anene, N.C., 2022. Assessment of bioaccessibility and health risk of mercury within soil of artisanal gold mine sites, Niger, North-central part of Nigeria. Environmental geochemistry and health, 44(3), pp.893–909
  24. Odumo, B.O., Carbonell, G., Angeyo, H.K., Patel, J.P., Torrijos, M. and Rodríguez Martín, J.A., 2014. Impact of gold mining associated with mercury contamination in soil, biota sediments and tailings in Kenya. Environmental science and pollution research, 21(21), pp.12426–12435
  25. Pavilonis, B., Grassman, J., Johnson, G., Diaz, Y. and Caravanos, J., 2017. Characterization and risk of exposure to elements from artisanal gold mining operations in the Bolivian Andes. Environmental research, 154, pp.1–9
  26. Prochácková, T., Góra, R., Kandráč, J. and Hutta, M., 1998. Distribution of mercury in soil organic matter fractions obtained by dissolution/precipitation method. Journal of radioanalytical and nuclear chemistry, 229(1–2), pp.61–65
  27. Qin, H., Zhang, Z., Liu, M., Liu, H., Wang, Y., Wen, X., Zhang, Y. and Yan, S., 2016. Site test of phytoremediation of an open pond contaminated with domestic sewage using water hyacinth and water lettuce. Ecological engineering, 95, pp.753–762
  28. Rai, P.K., 2019. Heavy metals/metalloids remediation from wastewater using free floating macrophytes of a natural wetland. Environmental technology & innovation, 15, p.100393
  29. Ramadan, B.S., Wibowo, Y.G., Anwar, D. and Maryani, A.T., 2024. A review of life cycle assessment of nanomaterials-based adsorbent for environmental remediation. Global nest journal, pp.1–18
  30. Ramadan, B.S., Wulandari, M., Wibowo, Y.G., Ikhlas, N. and Nurseta, D.Y., 2021. Removing ionic and nonionic pollutants from soil, sludge, and sediment using ultrasound‐assisted electrokinetic treatment. In: Ribeiro, A.B. and Prasad, M.N.V. (eds.) Electrokinetic remediation for environmental security and sustainability. 1st ed. Wiley, pp.653–677
  31. Rasmussen, L.D., Sørensen, S.J., Turner, R.R. and Barkay, T., 2000. Application of a mer-lux biosensor for estimating bioavailable mercury in soil. Soil biology and biochemistry, 32(5), pp.639–646
  32. Rezania, S., Ponraj, M., Talaiekhozani, A., Mohamad, S.E., Md Din, M.F., Taib, S.M., Sabbagh, F. and Sairan, F.M., 2015. Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. Journal of environmental management, 163, pp.125–133
  33. Riddle, S.G., Tran, H.H., Dewitt, J.G. and Andrews, J.C., 2002. Field, laboratory, and X-ray absorption spectroscopic studies of mercury accumulation by water hyacinths. Environmental science & technology, 36(9), pp.1965–1970
  34. Rosanti, D., Wibowo, Y.G., Safri, M., Maryani, A.T. and Ramadhan, B.S., 2020. Bioremediations technologies on wastewater treatment: Opportunities, challenges and economic perspective. Sainmatika: Jurnal ilmiah matematika dan ilmu pengetahuan alam, 17(2), p.142
  35. Soe, P.S., Kyaw, W.T., Arizono, K., Ishibashi, Y. and Agusa, T., 2022. Mercury pollution from artisanal and small-scale gold mining in Myanmar and other Southeast Asian countries. International journal of environmental research and public health, 19(10), p.6290
  36. Teixeira, R.A., Pereira, W.V.D.S., Souza, E.S.D., Ramos, S.J., Dias, Y.N., Lima, M.W.D., De Souza Neto, H.F., Oliveira, E.S.D. and Fernandes, A.R., 2021. Artisanal gold mining in the eastern Amazon: Environmental and human health risks of mercury from different mining methods. Chemosphere, 284, p.131220
  37. Wang, J., Feng, X., Anderson, C.W.N., Xing, Y. and Shang, L., 2012. Remediation of mercury contaminated sites – A review. Journal of hazardous materials, 221–222, pp.1–18
  38. Wibowo, Y.G., Nugraha, A.T. and Arif, R., 2023. Phytoremediation of several wastewater sources using Pistia stratiotes and Eichhornia crassipes in Indonesia. Environmental nanotechnology, monitoring & management, 20, p.100781
  39. Wibowo, Y.G., Lululangin, B.R.G., Safitri, H., Rohman, A., Sudibyo, Priyanto, S., Syarifuddin, H., Tatik Maryani, A., Tawfiqurahman Yuliansyah, A., Kurniawan, A., Nur’ani, H., Tsabitah, N., Taher, T. and Petrus, H.T.B.M., 2023. Rapid and highly efficient adsorption of dye and heavy metal on low-cost adsorbent derived from human feces and Chlorella vulgaris. Environmental nanotechnology, monitoring & management, 20, p.100905
  40. Wibowo, Y.G. and Ramadan, B.S., 2021. Enhanced remediation and recovery of metal‐contaminated soil using electrokinetic soil flushing. In: Ribeiro, A.B. and Prasad, M.N.V. (eds.) Electrokinetic remediation for environmental security and sustainability. 1st ed. Wiley, pp.603–627
  41. Wibowo, Y.G., Ramadan, B.S., Sudibyo, S., Safitri, H., Rohman, A. and Syarifuddin, H., 2023. Efficient remediation of acid mine drainage through sustainable and economical biochar-CaO composite derived from solid waste. Environment, development and sustainability, 26(7), pp.16803–16826
  42. Wibowo, Y.G., Ramadan, B.S., Taher, T. and Khairurrijal, K., 2023. Advancements of nanotechnology and nanomaterials in environmental and human protection for combatting the COVID-19 during and post-pandemic era: A comprehensive scientific review. Biomedical materials & devices
  43. Wibowo, Y.G., Ramadan, B.S., Maryani, A.T., Rosarina, D. and Arkham, L.O., 2022. Impact of illegal gold mining in Jambi, Indonesia. Indonesian mining journal, 25(1), pp.29–40
  44. Wibowo, Y.G., Safitri, H., Ramadan, B.S. and Sudibyo, 2022. Adsorption test using ultra-fine materials on heavy metals removal. Bioresource technology reports, 19, p.101149
  45. Wibowo, Y.G., Sudibyo, Naswir, M. and Ramadan, B.S., 2022. Performance of a novel biochar-clamshell composite for real acid mine drainage treatment. Bioresource technology reports, 17, p.100993
  46. Wibowo, Y.G., Wijaya, C., Yudhoyono, A., Sudibyo, Yuliansyah, A.T., Safitri, H., Tsabitah, N., Nur’ani, H., Khairurrijal, K. and Petrus, H.T.B.M., 2023. Highly efficient modified constructed wetlands using waste materials for natural acid mine drainage treatment. Sustainability, 15(20), p.14869
  47. Zhang, A., Li, X., Xing, J. and Xu, G., 2020. Adsorption of potentially toxic elements in water by modified biochar: A review. Journal of environmental chemical engineering, 8(4), p.104196

Last update:

No citation recorded.

Last update: 2025-08-12 11:29:30

No citation recorded.