skip to main content

Sustainable Valorization of Used Biochar for Hexavalent Chromium Removal from Wastewater and Soil Fertility Enhancement

*Dedy Anwar orcid  -  Institut Teknologi Del, Indonesia
Neliyati Neliyati  -  Universitas Jambi, Indonesia
Gusniwati Gusniwati  -  Universitas Jambi, Indonesia
Jasminarni Jasminarni  -  Universitas Jambi, Indonesia
Arif Rohman  -  Institut Teknologi Sumatera, Indonesia
Hutwan Syarifuddin  -  Universitas Jambi, Indonesia
Ellyas Alga Nainggolan  -  Czech University of Sciences Prague, Czech Republic
Yudha Gusti Wibowo  -  Institut Teknologi Sumatera, Indonesia

Citation Format:
Abstract

Environmental pollution from wastewater and soil contamination remains a critical global concern, with current treatment methods often facing limitations in scalability, cost, or environmental safety. Biochar, a carbon-rich material derived from biomass pyrolysis, has emerged as a sustainable adsorbent for heavy metals and organic pollutants. While its use in environmental remediation is well-established, the fate and reuse of spent biochar have received limited attention. This comprehensive review explores the untapped potential of used biochar, particularly for the removal of hexavalent chromium (Cr(VI)) from wastewater and its role in enhancing soil fertility. We critically analyze current practices, mechanisms of Cr(VI) removal using spent biochar, regeneration techniques, and field applications, while highlighting circular economy frameworks that promote resource efficiency. The study integrates empirical evidence from recent case studies and offers policy recommendations to support large-scale implementation. This work is the first to provide an integrative review of the reuse of spent biochar with a dual focus on wastewater treatment and soil enhancement, underpinned by a circular economy perspective. It addresses critical research gaps by evaluating regeneration techniques, post-use functionality, and practical field applications, thereby positioning spent biochar as a viable, low-cost, and eco-friendly alternative in environmental management systems.

Fulltext View|Download
Keywords: Environmental remediation; Regeneration materials; Toxic metals; Utilization of waste materials; Wastewater treatment

Article Metrics:

  1. Adhikari, S., Timms, W., & Mahmud, M. A. P. (2022). Optimising water holding capacity and hydrophobicity of biochar for soil amendment – A review. Science of The Total Environment, 851, 158043. https://doi.org/10.1016/j.scitotenv.2022.158043
  2. Ahmed, M. B., Zhou, J. L., Ngo, H. H., & Guo, W. (2016). Insight into biochar properties and its cost analysis. Biomass and Bioenergy, 84, 76–86. https://doi.org/10.1016/j.biombioe.2015.11.002
  3. Aiduang, W., Jatuwong, K., Kiatsiriroat, T., Kamopas, W., Tiyayon, P., Jawana, R., Xayyavong, O., & Lumyong, S. (2025). Spent Mushroom Substrate-Derived Biochar and Its Applications in Modern Agricultural Systems: An Extensive Overview. Life, 15(2), 317. https://doi.org/10.3390/life15020317
  4. Ali, A., Alharthi, S., Al-Shaalan, N. H., Naz, A., & Fan, H.-J. S. (2023). Efficient Removal of Hexavalent Chromium (Cr(VI)) from Wastewater Using Amide-Modified Biochar. Molecules, 28(13), 5146. https://doi.org/10.3390/molecules28135146
  5. Ali, I., Asim, Mohd., & Khan, T. A. (2012). Low cost adsorbents for the removal of organic pollutants from wastewater. Journal of Environmental Management, 113, 170–183. https://doi.org/10.1016/j.jenvman.2012.08.028
  6. Alves, A. K., Hauschild, T., Basegio, T. M., & Berutti, F. A. (2024). Influence of Lignin and Cellulose From Termite-Processed Biomass on Biochar Production and Evaluation of Chromium VI Adsorption. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-65959-5
  7. Asaad, A. A., El-Hawary, A. M., Abbas, M., Mohamed, I., Abdelhafez, A. A., & Bassouny, M. (2022). Reclamation of Wastewater in Wetlands Using Reed Plants and Biochar. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-24078-9
  8. Asadullah, A., Kaewsichan, L., & Tohdee, K. (2019). Adsorption of Hexavalent Chromium Onto Alkali‐modified Biochar Derived From Lepironia Articulata: A Kinetic, Equilibrium, and Thermodynamic Study. Water Environment Research, 91(11), 1433–1446. https://doi.org/10.1002/wer.1138
  9. Asirifi, I., Kaetzl, K., Werner, S., Heinze, S., Abagale, F. K., Wichern, M., Lübken, M., & Marschner, B. (2023). Biochar for Wastewater Treatment and Soil Improvement in Irrigated Urban Agriculture: Single and Combined Effects on Crop Yields and Soil Fertility. Journal of Soil Science and Plant Nutrition, 23(1), 1408–1420. https://doi.org/10.1007/s42729-023-01132-7
  10. Bashir, S., Qayyum, M. A., Husain, A., Bakhsh, A., Ahmed, N., Hussain, M. B., Elshikh, M. S., Alwahibi, M. S., Almunqedhi, B. M., Hussain, R., Wang, Y.-F., Zhou, Y., & Diao, Z.-H. (2021). Efficiency of Different Types of Biochars to Mitigate Cd Stress and Growth of Sunflower (Helianthus; L.) in Wastewater Irrigated Agricultural Soil. Saudi Journal of Biological Sciences, 28(4), 2453–2459. https://doi.org/10.1016/j.sjbs.2021.01.045
  11. Berek, A. K., Hue, N. V., Radovich, T., & Ahmad, A. A. (2018). Biochars Improve Nutrient Retention Capacity of Highly Weathered Tropical Soils. https://doi.org/10.20944/preprints201806.0237.v1
  12. Bhardwaj, A., Nag, S., Hussain, K., Pandey, P., & Babu, J. N. (2022). Effect of Temperature and Fly Ash Content on the Catalytically Pyrolyzed Rice Straw Biochar–fly Ash Composites for Methylene Blue Adsorption. Asia-Pacific Journal of Chemical Engineering, 17(6). https://doi.org/10.1002/apj.2828
  13. Biederman, L., & Harpole, W. S. (2012). Biochar and Its Effects on Plant Productivity and Nutrient Cycling: A Meta‐analysis. GCB Bioenergy, 5(2), 202–214. https://doi.org/10.1111/gcbb.12037
  14. Blenis, N., Hue, N. V., Maaz, T. M., & Kantar, M. B. (2023). Biochar Production, Modification, and Its Uses in Soil Remediation: A Review. Sustainability, 15(4), 3442. https://doi.org/10.3390/su15043442
  15. Bolan, N., Hoang, S. A., Beiyuan, J., Gupta, S., Hou, D., Karakoti, A., Joseph, S., Jung, S., Kim, K., Kirkham, M. B., Kua, H. W., Kumar, M., Kwon, E. E., Ok, Y. S., Perera, V., Rinklebe, J., Shaheen, S. M., Sarkar, B., Sarmah, A. K., … Zwieten, L. V. (2021). Multifunctional Applications of Biochar Beyond Carbon Storage. International Materials Reviews, 67(2), 150–200. https://doi.org/10.1080/09506608.2021.1922047
  16. Bolan, N., Hoang, S. A., Beiyuan, J., Gupta, S., Hou, D., Karakoti, A., Joseph, S., Jung, S., Kim, K.-H., Kirkham, M. B., Kua, H. W., Kumar, M., Kwon, E. E., Ok, Y. S., Perera, V., Rinklebe, J., Shaheen, S. M., Sarkar, B., Sarmah, A. K., … Van Zwieten, L. (2022). Multifunctional applications of biochar beyond carbon storage. International Materials Reviews, 67(2), 150–200. https://doi.org/10.1080/09506608.2021.1922047
  17. Boraah, N., Chakma, S., & Kaushal, P. (2022). Attributes of wood biochar as an efficient adsorbent for remediating heavy metals and emerging contaminants from water: A critical review and bibliometric analysis. Journal of Environmental Chemical Engineering, 10(3), 107825. https://doi.org/10.1016/j.jece.2022.107825
  18. Brown, T. R., Wright, M. M., & Brown, R. C. (2010). Estimating Profitability of Two Biochar Production Scenarios: Slow Pyrolysis vs Fast Pyrolysis. Biofuels Bioproducts and Biorefining, 5(1), 54–68. https://doi.org/10.1002/bbb.254
  19. Brtnický, M., Hammerschmiedt, T., Elbl, J., Kintl, A., Škulcová, L., Radziemska, M., Látal, O., Baltazár, T., Kobzová, E., & Holátko, J. (2021). The Potential of Biochar Made From Agricultural Residues to Increase Soil Fertility and Microbial Activity: Impacts on Soils With Varying Sand Content. Agronomy, 11(6), 1174. https://doi.org/10.3390/agronomy11061174
  20. Calcan, S. I., Pârvulescu, O. C., Ion, V. A., Răducanu, C. E., Bădulescu, L., Madjar, R., Dobre, T., Egri, D., Moț, A., Iliescu, L. M., & Jerca, I. O. (2022). Effects of Biochar on Soil Properties and Tomato Growth. Agronomy, 12(8), 1824. https://doi.org/10.3390/agronomy12081824
  21. Chang, Y., Rossi, L., Zotarelli, L., Gao, B., Shahid, M. A., & Sarkhosh, A. (2021). Biochar improves soil physical characteristics and strengthens root architecture in Muscadine grape (Vitis rotundifolia L.). Chemical and Biological Technologies in Agriculture, 8(1), 7. https://doi.org/10.1186/s40538-020-00204-5
  22. Chen, X., Fan, G., Li, H., Li, Y., Zhang, R., Huang, Y., & Xu, X. (2022). Nanoscale zero-valent iron particles supported on sludge-based biochar for the removal of chromium (VI) from aqueous system. Environmental Science and Pollution Research, 29(3), 3853–3863. https://doi.org/10.1007/s11356-021-15969-x
  23. Cheng, A., Wang, X., Liu, X., & He, C. (2023). Wet-Process-Modified Blue-Green Algae Biochar by K2FeO4 for the Efficient Adsorption of Cr(VI) From Water. Processes, 11(5), 1489. https://doi.org/10.3390/pr11051489
  24. Commeh, M. K., Thiedeitz, M., Acheampong, B., Ashley, N. N. K., Gafah, G., Tsitsi, J. M., Acheampong, S., Tsekpo, E., Ess, R. N. V., & Barnor-Arthur, J. O. (2024). Utilization of Agricultural Wastes as Biochar’s and Pozzolanic Ashes in Cementitious Blends. https://doi.org/10.21203/rs.3.rs-4979519/v1
  25. Cordovil, C. M. d. S., Pinto, R., Silva, B., Sas‐Paszt, L., Sakrabani, R., & Skiba, U. (2019). The Impact of Woody Biochar on Microbial Processes in Conventionally and Organically Managed Arable Soils. Communications in Soil Science and Plant Analysis, 50(12), 1387–1402. https://doi.org/10.1080/00103624.2019.1614609
  26. Crespo-Barreiro, A., Gómez, N., González-Arias, J., Ortiz-Liébana, N., González‐Andrés, F., & Cara-Jiménez, J. (2023). Scaling-Up of the Production of Biochar From Olive Tree Pruning for Agricultural Use: Evaluation of Biochar Characteristics and Phytotoxicity. Agriculture, 13(5), 1064. https://doi.org/10.3390/agriculture13051064
  27. Dai, Z., Zhang, X., Tang, C., Muhammad, N., Wu, J., Brookes, P. C., & Xu, J. (2017). Potential role of biochars in decreasing soil acidification—A critical review. Science of The Total Environment, 581–582, 601–611. https://doi.org/10.1016/j.scitotenv.2016.12.169
  28. De Gisi, S., Lofrano, G., Grassi, M., & Notarnicola, M. (2016). Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustainable Materials and Technologies, 9, 10–40. https://doi.org/10.1016/j.susmat.2016.06.002
  29. De Lima, R. S., De Paiva E Silva Zanta, C. L., Meili, L., Dos Santos Lins, P. V., De Souza Dos Santos, G. E., & Tonholo, J. (2019). Fenton-based processes for the regeneration of biochar from Syagrus coronata biomass used as dye adsorbent. Desalination and Water Treatment, 162, 391–398. https://doi.org/10.5004/dwt.2019.24343
  30. Dey, S., Purakayastha, T. J., Sarkar, B., Rinklebe, J., Kumar, S., Chakraborty, R., Datta, A., Lal, K., & Shivay, Y. S. (2023). Enhancing cation and anion exchange capacity of rice straw biochar by chemical modification for increased plant nutrient retention. Science of The Total Environment, 886, 163681. https://doi.org/10.1016/j.scitotenv.2023.163681
  31. Diaz, C., Shah, R. K., Evans, T., Trabold, T. A., & Draper, K. (2020). Thermoformed Containers Based on Starch and Starch/Coffee Waste Biochar Composites. Energies, 13(22), 6034. https://doi.org/10.3390/en13226034
  32. Ding, H., Tong, G., Sun, J., Ouyang, J., Zhu, F., Zhou, Z., Zhou, N., & Zhong, M. (2023). Regeneration of methylene blue-saturated biochar by synergistic effect of H2O2 desorption and peroxymonosulfate degradation. Chemosphere, 316, 137766. https://doi.org/10.1016/j.chemosphere.2023.137766
  33. Ding, Y., Liu, Y., Liu, S., Li, Z., Tan, X., Huang, X., Zeng, G., Zhou, L., & Zheng, B. (2016). Biochar to Improve Soil Fertility. A Review. Agronomy for Sustainable Development, 36(2). https://doi.org/10.1007/s13593-016-0372-z
  34. Dissanayake, P. D., Palansooriya, K. N., Sang, M. K., Oh, D. X., Park, J., Hwang, S. Y., Igalavithana, A. D., Gu, C., & Ok, Y. S. (2022). Combined Effect of Biochar and Soil Moisture on Soil Chemical Properties and Microbial Community Composition in Microplastic‐contaminated Agricultural Soil. Soil Use and Management, 38(3), 1446–1458. https://doi.org/10.1111/sum.12804
  35. Domingues, R. R., Trugilho, P. F., Silva, C. A., Isabel Cristina Nogueira Alves de Melo, Melo, L. C. A., Magriotis, Z. M., & Sánchez‐Monedero, M. A. (2017). Properties of Biochar Derived From Wood and High-Nutrient Biomasses With the Aim of Agronomic and Environmental Benefits. Plos One, 12(5), e0176884. https://doi.org/10.1371/journal.pone.0176884
  36. Du Plessis, A. (2022). Persistent degradation: Global water quality challenges and required actions. One Earth, 5(2), 129–131. https://doi.org/10.1016/j.oneear.2022.01.005
  37. Ducey, T. F., Ippolito, J. A., Cantrell, K. B., Novak, J. M., & Lentz, R. D. (2013). Addition of Activated Switchgrass Biochar to an Aridic Subsoil Increases Microbial Nitrogen Cycling Gene Abundances. Applied Soil Ecology, 65, 65–72. https://doi.org/10.1016/j.apsoil.2013.01.006
  38. Enaime, G., Wichern, M., & Lübken, M. (2023). Contribution of Biochar Application to the Promotion of Circular Economy in Agriculture. Frontiers in Agronomy, 5. https://doi.org/10.3389/fagro.2023.1214012
  39. Ennis, C. J., Evans, A. G., Islam, M., Ralebitso-Senior, T. K., & Senior, E. (2012). Biochar: Carbon Sequestration, Land Remediation, and Impacts on Soil Microbiology. Critical Reviews in Environmental Science and Technology, 42(22), 2311–2364. https://doi.org/10.1080/10643389.2011.574115
  40. Espinoza-Tofalos, A., Fourvel, G., Tock, P., & Biwer, A. (2025). Quantifying the economic impact: A methodological approach to estimate soil pollution costs in Luxembourg. Integrated Environmental Assessment and Management, vjae021. https://doi.org/10.1093/inteam/vjae021
  41. Fang, C., Zhang, T., Li, P., Jiang, R. F., & Wang, Y. (2014). Application of Magnesium Modified Corn Biochar for Phosphorus Removal and Recovery From Swine Wastewater. International Journal of Environmental Research and Public Health, 11(9), 9217–9237. https://doi.org/10.3390/ijerph110909217
  42. Glaser, B., & Lehr, V.-I. (2019). Biochar Effects on Phosphorus Availability in Agricultural Soils: A Meta-Analysis. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-45693-z
  43. Guan, Y., Ma, C., Zhou, J., Wang, H., & Yang, H. (2025). Enhancing sulfonamide removal from water using wood biochar: Adsorption mechanisms and regeneration potential. Journal of the Taiwan Institute of Chemical Engineers, 167, 105910. https://doi.org/10.1016/j.jtice.2024.105910
  44. Gupta, S., Sireesha, S., Sreedhar, I., Patel, C. M., & Anitha, K. L. (2020). Latest trends in heavy metal removal from wastewater by biochar based sorbents. Journal of Water Process Engineering, 38, 101561. https://doi.org/10.1016/j.jwpe.2020.101561
  45. Gusiatin, Z. M., & Rouhani, A. (2023). Application of Selected Methods to Modify Pyrolyzed Biochar for the Immobilization of Metals in Soil: A Review. Materials, 16(23), 7342. https://doi.org/10.3390/ma16237342
  46. Hilber, I., Bastos, A. C., Loureiro, S., Soja, G., Marsz, A., Cornelissen, G., & Bucheli, T. D. (2017). The Different Faces of Biochar: Contamination Risk Versus Remediation Tool. Journal of Environmental Engineering and Landscape Management, 25(2), 86–104. https://doi.org/10.3846/16486897.2016.1254089
  47. Hong, H.-J., Lee, G., & Jeong, H. S. (2024). Carbothermal Shock Derived Electrochemical Regeneration of Spent Biochar for Remediation of Ciprofloxacine Contaminated Water. ECS Meeting Abstracts, MA2024-02(69), 4842–4842. https://doi.org/10.1149/MA2024-02694842mtgabs
  48. Hossain, M. Z., Bahar, M. M., Sarkar, B., Donne, S. W., Ok, Y. S., Palansooriya, K. N., Kirkham, M. B., Chowdhury, S., & Bolan, N. (2020). Biochar and Its Importance on Nutrient Dynamics in Soil and Plant. Biochar, 2(4), 379–420. https://doi.org/10.1007/s42773-020-00065-z
  49. Hui, D. (2021). Effects of Biochar Application on Soil Properties, Plant Biomass Production, and Soil Greenhouse Gas Emissions: A Mini-Review. Agricultural Sciences, 12(03), 213–236. https://doi.org/10.4236/as.2021.123014
  50. Ifthikar, J., Wang, J., Wang, Q., Wang, T., Wang, H., Khan, A., Ali, J., Sun, T., Jiao, X., & Chen, Z. (2017). Highly Efficient Lead Distribution by Magnetic Sewage Sludge Biochar: Sorption Mechanisms and Bench Applications. Bioresource Technology, 238, 399–406. https://doi.org/10.1016/j.biortech.2017.03.133
  51. Ippolito, J. A., Cui, L., Kammann, C., Wrage, N., Estavillo, J. M., Fuertes‐Mendizábal, T., Cayuela, M. L., Sigua, G. C., Novak, J. M., Spokas, K. A., & Borchard, N. (2020). Feedstock Choice, Pyrolysis Temperature and Type Influence Biochar Characteristics: A Comprehensive Meta-Data Analysis Review. Biochar, 2(4), 421–438. https://doi.org/10.1007/s42773-020-00067-x
  52. Jaswal, R., Bedi, A., Bedi, I., Jaiswar, A., & Jasrotia, R. S. (2022). Phytoremediation of soil and water. In Phytoremediation (pp. 239–262). Elsevier. https://doi.org/10.1016/B978-0-323-89874-4.00027-3
  53. Jindo, K., Sánchez‐Monedero, M. A., Mastrolonardo, G., Audette, Y., Higashikawa, F. S., Silva, C. A., Akashi, K., & Mondini, C. (2020). Role of Biochar in Promoting Circular Economy in the Agriculture Sector. Part 2: A Review of the Biochar Roles in Growing Media, Composting and as Soil Amendment. Chemical and Biological Technologies in Agriculture, 7(1). https://doi.org/10.1186/s40538-020-00179-3
  54. Jones, E. R., Van Vliet, M. T. H., Qadir, M., & Bierkens, M. F. P. (2021). Country-level and gridded estimates of wastewater production, collection, treatment and reuse. Earth System Science Data, 13(2), 237–254. https://doi.org/10.5194/essd-13-237-2021
  55. Joseph, S., Cowie, A., Zwieten, L. V., Bolan, N., Budai, A., Buss, W., Cayuela, M. L., Gräber, E. R., Ippolito, J. A., Kuzyakov, Y., Luo, Y., Ok, Y. S., Palansooriya, K. N., Shepherd, J. G., Stephens, S. L., Weng, Z., & Lehmann, J. (2021). How Biochar Works, and When It Doesn’t: A Review of Mechanisms Controlling Soil and Plant Responses to Biochar. GCB Bioenergy, 13(11), 1731–1764. https://doi.org/10.1111/gcbb.12885
  56. Kabir, E., Kim, K., & Kwon, E. E. (2023a). Biochar as a Tool for the Improvement of Soil and Environment. Frontiers in Environmental Science, 11. https://doi.org/10.3389/fenvs.2023.1324533
  57. Kabir, E., Kim, K.-H., & Kwon, E. E. (2023b). Biochar as a tool for the improvement of soil and environment. Frontiers in Environmental Science, 11, 1324533. https://doi.org/10.3389/fenvs.2023.1324533
  58. Kaur, D., Pallavi, Singh, A., Sarkar, S., Thakur, S., & Kaur, J. (2024). Biochar: A Sustainable Tool for Soil Health, Reducing Greenhouse Gas Emissions and Mitigating Climate Change. Journal of Applied and Natural Science, 16(3), 1049–1061. https://doi.org/10.31018/jans.v16i3.5665
  59. Khan, I., Chen, T., Farooq, M., Luan, C., Wu, Q., wanning, D., Su, X., & Li‐xue, W. (2021). The Residual Impact of Straw Mulch and Biochar Amendments on Soil Physiochemical Properties and Yield of Maize Under Rainfed System. Agronomy Journal, 113(2), 1102–1120. https://doi.org/10.1002/agj2.20540
  60. Kokab, T., Ashraf, H. S., Shakoor, M. B., Jilani, A., Ahmad, S. R., Majid, M., Ali, S., Farid, N., Alghamdi, R. A., Al-Quwaie, D. A., & Hakeem, K. R. (2021). Effective Removal of Cr(VI) From Wastewater Using Biochar Derived From Walnut Shell. International Journal of Environmental Research and Public Health, 18(18), 9670. https://doi.org/10.3390/ijerph18189670
  61. Li, A., Deng, H., Jiang, Y., & Ye, C. (2020). High-Efficiency Removal of Cr(VI) From Wastewater by Mg-Loaded Biochars: Adsorption Process and Removal Mechanism. Materials, 13(4), 947. https://doi.org/10.3390/ma13040947
  62. Liang, M., Lin, L., He, H., Li, J., Zhu, Z., & Zhu, Y. (2021). Applications of Biochar and Modified Biochar in Heavy Metal Contaminated Soil: A Descriptive Review. Sustainability, 13(24), 14041. https://doi.org/10.3390/su132414041
  63. Liu, W.-J., Jiang, H., & Yu, H.-Q. (2015). Development of Biochar-Based Functional Materials: Toward a Sustainable Platform Carbon Material. Chemical Reviews, 115(22), 12251–12285. https://doi.org/10.1021/acs.chemrev.5b00195
  64. Lorenz, K., & Lal, R. (2014). Biochar application to soil for climate change mitigation by soil organic carbon sequestration. Journal of Plant Nutrition and Soil Science, 177(5), 651–670. https://doi.org/10.1002/jpln.201400058
  65. Lu, L., Yu, W., Wang, Y., Zhang, K., Zhu, X., Zhang, Y., Wu, Y., Ullah, H., Xiao, X., & Chen, B. (2020). Application of Biochar-Based Materials in Environmental Remediation: From Multi-Level Structures to Specific Devices. Biochar, 2(1), 1–31. https://doi.org/10.1007/s42773-020-00041-7
  66. Luan, J., Fu, Y., Tang, W., Yang, F., Li, X., & Yu, Z. (2023). Impact of Interaction Between Biochar and Soil Microorganisms on Growth of Chinese Cabbage by Increasing Soil Fertility. Applied Sciences, 13(23), 12545. https://doi.org/10.3390/app132312545
  67. Luo, S., Wang, S., Tian, L., Li, S., Li, X., Shen, Y., & Tian, C. (2017). Long-term biochar application influences soil microbial community and its potential roles in semiarid farmland. Applied Soil Ecology, 117–118, 10–15. https://doi.org/10.1016/j.apsoil.2017.04.024
  68. Lyu, H., Zhang, H., Chu, M., Zhang, C., Tang, J., Chang, S. X., Mašek, O., & Ok, Y. S. (2022). Biochar affects greenhouse gas emissions in various environments: A critical review. Land Degradation & Development, 33(17), 3327–3342. https://doi.org/10.1002/ldr.4405
  69. Mawalla, D., & Gülser, C. (2025). Using Agricultural Originated Biochars to Improve Chemical Properties of an Acid Soil and Wheat Yield. https://doi.org/10.21203/rs.3.rs-5900990/v1
  70. Mayilswamy, N., Nighojkar, A., Edirisinghe, M., Sundaram, S., & Kandasubramanian, B. (2023). Sludge-Derived Biochar: Physicochemical Characteristics for Environmental Remediation. Applied Physics Reviews, 10(3). https://doi.org/10.1063/5.0137651
  71. Mia, S., Singh, B., & Dijkstra, F. A. (2017). Aged Biochar Affects Gross Nitrogen Mineralization and Recovery: A 15N Study in Two Contrasting Soils. GCB Bioenergy, 9(7), 1196–1206. https://doi.org/10.1111/gcbb.12430
  72. Mortazavian, S., Murph, S. E. H., & Moon, J. (2022). Biochar Nanocomposite as an Inexpensive and Highly Efficient Carbonaceous Adsorbent for Hexavalent Chromium Removal. Materials, 15(17), 6055. https://doi.org/10.3390/ma15176055
  73. Mukherjee, S., Sarkar, B., Aralappanavar, V. K., Mukhopadhyay, R., Basak, B. B., Srivastava, P., Marchut-Mikołajczyk, O., Bhatnagar, A., Semple, K. T., & Bolan, N. (2022). Biochar-microorganism interactions for organic pollutant remediation: Challenges and perspectives. Environmental Pollution, 308, 119609. https://doi.org/10.1016/j.envpol.2022.119609
  74. Nair, V. D., Nair, P. K. R., Dari, B., Freitas, A. M., Chatterjee, N., & Pinheiro, F. M. (2017). Biochar in the Agroecosystem–Climate-Change–Sustainability Nexus. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.02051
  75. Nelissen, V., Rütting, T., Huygens, D., Ruysschaert, G., & Boeckx, P. (2014). Temporal Evolution of Biochar’s Impact on Soil Nitrogen Processes – A15N Tracing Study. GCB Bioenergy, 7(4), 635–645. https://doi.org/10.1111/gcbb.12156
  76. Neve, S., Sarkar, D., Warke, M., Bandosz, T. J., & Datta, R. (2023). Valorization of Spent Vetiver Roots for Biochar Generation. Molecules, 29(1), 63. https://doi.org/10.3390/molecules29010063
  77. Panwar, N. L., & Pawar, A. (2022). Influence of activation conditions on the physicochemical properties of activated biochar: A review. Biomass Conversion and Biorefinery, 12(3), 925–947. https://doi.org/10.1007/s13399-020-00870-3
  78. Prathap, M. G., & Parthasarathy, P. (2025). Adsorption Study on Hexavalent Chromium Removal Using Magnetic Biochar From Ziziphus Jujube Seed. Chemical Engineering & Technology, 48(4). https://doi.org/10.1002/ceat.70003
  79. Premalatha, R. P., Bindu, J. P., Nivetha, E., Malarvizhi, P., Manorama, K., Parameswari, E., & Davamani, V. (2023). A Review on Biochar’s Effect on Soil Properties and Crop Growth. Frontiers in Energy Research, 11. https://doi.org/10.3389/fenrg.2023.1092637
  80. Premalatha, R. P., Poorna Bindu, J., Nivetha, E., Malarvizhi, P., Manorama, K., Parameswari, E., & Davamani, V. (2023). A review on biochar’s effect on soil properties and crop growth. Frontiers in Energy Research, 11, 1092637. https://doi.org/10.3389/fenrg.2023.1092637
  81. Prendergast‐Miller, M. T., Duvall, M. R., & Sohi, S. (2013). Biochar–root Interactions Are Mediated by Biochar Nutrient Content and Impacts on Soil Nutrient Availability. European Journal of Soil Science, 65(1), 173–185. https://doi.org/10.1111/ejss.12079
  82. Prochnow, F. D., Cavali, M., Dresch, A. P., Belli, I. M., Libardi, N., & Castilhos, A. B. d. (2024). Biochar: From Laboratory to Industry Scale—An Overview of Scientific and Industrial Advances, Opportunities in the Brazilian Context, and Contributions to Sustainable Development. Processes, 12(5), 1006. https://doi.org/10.3390/pr12051006
  83. Qiao, K., Tian, W., Bai, J., Dong, J., Zhao, J., Gong, X., & Liu, S. (2018). Preparation of biochar from Enteromorpha prolifera and its use for the removal of polycyclic aromatic hydrocarbons (PAHs) from aqueous solution. Ecotoxicology and Environmental Safety, 149, 80–87. https://doi.org/10.1016/j.ecoenv.2017.11.027
  84. Qiu, M., Liu, L., Ling, Q., Cai, Y., Yu, S., Wang, S., Fu, D., Hu, B., & Wang, X. (2022). Biochar for the Removal of Contaminants From Soil and Water: A Review. Biochar, 4(1). https://doi.org/10.1007/s42773-022-00146-1
  85. Rahim, H. U., Akbar, W. A., & Alatalo, J. M. (2022). A Comprehensive Literature Review on Cadmium (Cd) Status in the Soil Environment and Its Immobilization by Biochar-Based Materials. Agronomy, 12(4), 877. https://doi.org/10.3390/agronomy12040877
  86. Rajagopalan, V. S., Rajendran, Y., Lakshumiah, A., & Ravindiran, G. (2022). Batch, thermodynamic, and regeneration studies of Reactive Blue 19 using Ulva reticulata (biochar). Desalination and Water Treatment, 267, 231–239. https://doi.org/10.5004/dwt.2022.28667
  87. Rajamani, P., Arumugaprabu, V., Palani, G., Shanmugam, V., Rajendran, S., Subbaiah, A., & Kumar, G. B. R. (2023). Enhancing Vinyl Ester Properties With eco‐friendly Sustainable Biochar Filler. Polymer Composites, 44(12), 8344–8352. https://doi.org/10.1002/pc.27700
  88. Rashid, R., Shafiq, I., Akhter, P., Iqbal, M. J., & Hussain, M. (2021). A state-of-the-art review on wastewater treatment techniques: The effectiveness of adsorption method. Environmental Science and Pollution Research, 28(8), 9050–9066. https://doi.org/10.1007/s11356-021-12395-x
  89. Regkouzas, P., Sygellou, L., & Diamadopoulos, E. (2023). Production and Characterization of Graphene Oxide-Engineered Biochars and Application for Organic Micro-Pollutant Adsorption From Aqueous Solutions. Environmental Science and Pollution Research, 30(37), 87810–87829. https://doi.org/10.1007/s11356-023-28549-y
  90. Sadowska, U., Domagała-Świątkiewicz, I., & Żabiński, A. (2020). Biochar and Its Effects on Plant–Soil Macronutrient Cycling During a Three-Year Field Trial on Sandy Soil With Peppermint (Mentha Piperita L.). Part I: Yield and Macro Element Content in Soil and Plant Biomass. Agronomy, 10(12), 1950. https://doi.org/10.3390/agronomy10121950
  91. Sajjadi, B., Chen, W.-Y., & Egiebor, N. O. (2019). A comprehensive review on physical activation of biochar for energy and environmental applications. Reviews in Chemical Engineering, 35(6), 735–776. https://doi.org/10.1515/revce-2017-0113
  92. Samani, M. R., Borghei, S. M., Olad, A., & Chaichi, M. J. (2010). Removal of Chromium From Aqueous Solution Using Polyaniline – Poly Ethylene Glycol Composite. Journal of Hazardous Materials, 184(1–3), 248–254. https://doi.org/10.1016/j.jhazmat.2010.08.029
  93. Santhosh, C., Daneshvar, E., Tripathi, K. M., Baltrėnas, P., Kim, T. Y., Baltrėnaitė, E., & Bhatnagar, A. (2020). Synthesis and Characterization of Magnetic Biochar Adsorbents for the Removal of Cr(VI) and Acid Orange 7 Dye From Aqueous Solution. Environmental Science and Pollution Research, 27(26), 32874–32887. https://doi.org/10.1007/s11356-020-09275-1
  94. Schmidt, H., Kammann, C., Hagemann, N., Leifeld, J., Bucheli, T. D., Sánchez‐Monedero, M. A., & Cayuela, M. L. (2021). Biochar in Agriculture – A Systematic Review of 26 Global Meta‐analyses. GCB Bioenergy, 13(11), 1708–1730. https://doi.org/10.1111/gcbb.12889
  95. Shanmugaraj, C., Jaiganesh, V., Biswas, M. K., & Kumar, H. (2024). Biochar in Agriculture: Enhancing Crop Productivity and Disease Resistance. Journal of Advances in Biology & Biotechnology, 27(6), 221–234. https://doi.org/10.9734/jabb/2024/v27i6881
  96. Shirzad, H., Moghaddam, S. S., Rahımı, A., Rezapour, S., Xiao, J., & Popović‐Djordjević, J. (2024). Combined Effect of Biological and Organic Fertilizers on Agrobiochemical Traits of Corn (Zea Mays L.) Under Wastewater Irrigation. Plants, 13(10), 1331. https://doi.org/10.3390/plants13101331
  97. Shrivastava, A., Abhishek, K., Gupta, A. K., Jain, H., Kumari, M., Patel, M., & Sharma, P. (2024). Removal of micro- and nano-plastics from aqueous matrices using modified biochar – A review of synthesis, applications, interaction, and regeneration. Journal of Hazardous Materials Advances, 16, 100518. https://doi.org/10.1016/j.hazadv.2024.100518
  98. Singh, H., Northup, B. K., Rice, C. W., & Prasad, P. V. V. (2022). Biochar applications influence soil physical and chemical properties, microbial diversity, and crop productivity: A meta-analysis. Biochar, 4(1), 8. https://doi.org/10.1007/s42773-022-00138-1
  99. Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A Review of Biochar and Its Use and Function in Soil. In Advances in Agronomy (Vol. 105, pp. 47–82). Elsevier. https://doi.org/10.1016/S0065-2113(10)05002-9
  100. Sunardi, S., Sumardiyono, S., Mardiyono, M., Hidayati, N., & Soebiyanto, S. (2023). Utilization of Iron Scrap Into Copperas and Rambutan (Nephelium Lappaceum L.) Peel Extract Into Environmentally Friendly Iron Nanoparticles for Hexavalent Chromium Removal and Its Kinetics. Environmental Quality Management, 33(3), 531–542. https://doi.org/10.1002/tqem.22153
  101. Tan, Y., Wang, J., Zhan, L., Yang, H., & Gong, Y. (2024). Removal of Cr(VI) from aqueous solution using ball mill modified biochar: Multivariate modeling, optimization and experimental study. Scientific Reports, 14(1), 4853. https://doi.org/10.1038/s41598-024-55520-9
  102. Tian, J., Wang, J., Dippold, M., Gao, Y., Blagodatskaya, E., & Kuzyakov, Y. (2016). Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil. Science of The Total Environment, 556, 89–97. https://doi.org/10.1016/j.scitotenv.2016.03.010
  103. Trippe, K. M., Griffith, S. M., Banowetz, G. M., & Whitaker, G. W. (2015). Changes in Soil Chemistry Following Wood and Grass Biochar Amendments to an Acidic Agricultural Production Soil. Agronomy Journal, 107(4), 1440–1446. https://doi.org/10.2134/agronj14.0593
  104. Tusar, H. M., Uddin, Md. K., Mia, S., Suhi, A. A., Samsuri, A. W., Kasim, S., Sairi, N. A., Alam, Md. Z., & Anwar, F. (2023). Biochar-Acid Soil Interactions—A Review. Sustainability, 15(18), 13366. https://doi.org/10.3390/su151813366
  105. Vilakazi, S. P., Muchaonyerwa, P., & Buthelezi-Dube, N. (2023). Characteristics and Liming Potential of Biochar Types From Potato Waste and Pine-Bark. Plos One, 18(2), e0282011. https://doi.org/10.1371/journal.pone.0282011
  106. Wang, H., Ren, T., Yang, H., Feng, Y., Feng, H., Liu, G., Yin, Q., & Hongzhi, S. (2020). Research and Application of Biochar in Soil CO2 Emission, Fertility, and Microorganisms: A Sustainable Solution to Solve China’s Agricultural Straw Burning Problem. Sustainability, 12(5), 1922. https://doi.org/10.3390/su12051922
  107. Wang, H., Zhang, R., Zhao, Y., Shi, H., & Liu, G. (2022). Effect of Biochar on Rhizosphere Soil Microbial Diversity and Metabolism in Tobacco-Growing Soil. Ecologies, 3(4), 539–556. https://doi.org/10.3390/ecologies3040040
  108. Wang, J., Li, W., Zhao, Z., Musoke, F. S. N., & Wu, X. (2022). Ultrasonic Activated Biochar and Its Removal of Harmful Substances in Environment. Microorganisms, 10(8), 1593. https://doi.org/10.3390/microorganisms10081593
  109. Wang, J., Xiong, Z., & Kuzyakov, Y. (2015). Biochar Stability in Soil: Meta‐analysis of Decomposition and Priming Effects. GCB Bioenergy, 8(3), 512–523. https://doi.org/10.1111/gcbb.12266
  110. Wang, L., Li, J., Zhong, G., Li, J., Xiao, L., Wang, S., & Tang, Y. (2023). Diatom Biochar Recovered Au(III) Efficiently From Both Synthetic and Real Electroplating Wastewaters. Acs Es&t Water, 3(5), 1395–1405. https://doi.org/10.1021/acsestwater.3c00066
  111. Wang, Q., Yan, Y., Liu, W., Liu, Q., Song, Y., Ge, C., & Ma, H. (2023). Removal Performance of KOH-Modified Biochar From Tropical Biomass on Tetracycline and Cr(VI). Materials, 16(11), 3994. https://doi.org/10.3390/ma16113994
  112. Wang, W., Huang, J., Wu, T., Ren, X., & Zhao, X. (2023a). Research on the Preparation of Biochar From Waste and Its Application in Environmental Remediation. Water, 15(19), 3387. https://doi.org/10.3390/w15193387
  113. Wang, W., Huang, J., Wu, T., Ren, X., & Zhao, X. (2023b). Research on the Preparation of Biochar from Waste and Its Application in Environmental Remediation. Water, 15(19), 3387. https://doi.org/10.3390/w15193387
  114. Warzukni, W., Zaitun, Z., & Jauharlina, J. (2022). Changes in Soil Chemical Properties Due to the Application of Young Coconut Waste Biochar and Goat Manure Fertilizer on Tomato (Solanum Lycopersicum L.) Cultivation Land. Iop Conference Series Earth and Environmental Science, 1109(1), 012085. https://doi.org/10.1088/1755-1315/1109/1/012085
  115. Wibowo, Y. G., Anwar, D., Safitri, H., Setiawan, A., Supriyatna, Y. I., Sudibyo, Yuliansyah, A. T., & Petrus, H. T. B. M. (2025). A comprehensive review of layered double hydroxide/magnetite-biochar for chromium removal from wastewater. Bioresource Technology Reports, 29, 102034. https://doi.org/10.1016/j.biteb.2025.102034
  116. Wibowo, Y. G., Anwar, D., Safitri, H., Surya, I., Sudibyo, S., Yuliansyah, A. T., & Murti Petrus, H. T. B. (2025). Functionalized magnetite-biochar with live and dead bacteria for adsorption-biosorption of highly toxic metals: Cd, Hg, and Pb. Next Materials, 6, 100487. https://doi.org/10.1016/j.nxmate.2025.100487
  117. Wibowo, Y. G., Safitri, H., Kusumawati, Aini, W. D., Farantino, R., Ginting, S. B., Rinovian, A., Kurniawan, S. B., Khairurrijal, K., Taher, T., Kusumaningrum, W. B., Sudibyo, S., Yuliansyah, A. T., & Petrus, H. T. B. M. (2025). Biochar MMT ZnAl LDH composite materials derived from solid waste for heavy metal removal in artificial acid mine drainage. Scientific Reports, 15(1), 14914. https://doi.org/10.1038/s41598-025-96987-4
  118. Xiao, X., Chen, B., Chen, Z., Zhu, L., & Schnoor, J. L. (2018). Insight Into Multiple and Multilevel Structures of Biochars and Their Potential Environmental Applications: A Critical Review. Environmental Science & Technology, 52(9), 5027–5047. https://doi.org/10.1021/acs.est.7b06487
  119. Xiao, Y., Liu, L., Han, F., & Liu, X. (2022). Mechanism on Cr(VI) removal from aqueous solution by camphor branch biochar. Heliyon, 8(8), e10328. https://doi.org/10.1016/j.heliyon.2022.e10328
  120. Xu, X., Zhao, Y., Sima, J., Zhao, L., Mašek, O., & Cao, X. (2017). Indispensable Role of Biochar-Inherent Mineral Constituents in Its Environmental Applications: A Review. Bioresource Technology, 241, 887–899. https://doi.org/10.1016/j.biortech.2017.06.023
  121. Yaashikaa, P. R., Kumar, P. S., Varjani, S., & Saravanan, A. (2020). A Critical Review on the Biochar Production Techniques, Characterization, Stability and Applications for Circular Bioeconomy. Biotechnology Reports, 28, e00570. https://doi.org/10.1016/j.btre.2020.e00570
  122. Yang, W., Gao, L., Quan, S., Zhang, L., Wang, B., Hong, H., Li, L., Ma, H., Yin, C., Feng, F., & Jing, Y. (2022). The Removal of Cr(VI) From Aqueous Solutions With Corn Stalk Biochar. International Journal of Environmental Research and Public Health, 19(21), 14188. https://doi.org/10.3390/ijerph192114188
  123. Yao, Y., Gao, B., Chen, J., & Yang, L. (2013). Engineered Biochar Reclaiming Phosphate From Aqueous Solutions: Mechanisms and Potential Application as a Slow-Release Fertilizer. Environmental Science & Technology, 47(15), 8700–8708. https://doi.org/10.1021/es4012977
  124. Yuan, J., & Xu, R. (2010). The Amelioration Effects of Low Temperature Biochar Generated From Nine Crop Residues on an Acidic Ultisol. Soil Use and Management, 27(1), 110–115. https://doi.org/10.1111/j.1475-2743.2010.00317.x
  125. Yuan, X., Suvarna, M., Lim, J. Y., Pérez‐Ramírez, J., Wang, X., & Ok, Y. S. (2024). Active Learning-Based Guided Synthesis of Engineered Biochar for CO2 Capture. Environmental Science & Technology, 58(15), 6628–6636. https://doi.org/10.1021/acs.est.3c10922
  126. Zhang, D., Han, T., Wang, J., Sun, C., Jiang, X., Ni, Z., & Jianhua, G. (2022). An Insight Into the Effect of Rice Straw Biochar on Compressive Strength and Thermal Conductivity of Cement. Journal of Physics Conference Series, 2168(1), 012012. https://doi.org/10.1088/1742-6596/2168/1/012012
  127. Zhang, N., Reguyal, F., Praneeth, S., & Sarmah, A. K. (2023). A novel green synthesized magnetic biochar from white tea residue for the removal of Pb(II) and Cd(II) from aqueous solution: Regeneration and sorption mechanism. Environmental Pollution, 330, 121806. https://doi.org/10.1016/j.envpol.2023.121806
  128. Zhang, Y., Jiao, X., Liu, N., Lv, J., & Yang, Y. (2020). Enhanced removal of aqueous Cr(VI) by a green synthesized nanoscale zero-valent iron supported on oak wood biochar. Chemosphere, 245, 125542. https://doi.org/10.1016/j.chemosphere.2019.125542
  129. Zhou, L. (2024). A Review of Biomass-Derived Biochar and Its Potential in Asphalt Pavement Engineering. Materials Science-Poland, 42(2), 81–99. https://doi.org/10.2478/msp-2024-0022

Last update:

No citation recorded.

Last update: 2025-10-19 05:12:09

No citation recorded.