BibTex Citation Data :
@article{Reaktor14999, author = {M. Djaeni}, title = {Optimization Of Chitosan Preparation From Crab Shell Waste}, journal = {Reaktor}, volume = {7}, number = {1}, year = {2017}, keywords = {crab shell, deproteination, demineralization, deacetylation, chitosan}, abstract = { Crab shell waste from seafood restaurant is potential to be used as chitosan source. This material containing 20-30% of chitin which could be converted into chitosan through deacetylation process. While, chitin could be isolated from crab shell by deproteination and demineralization. Chitosan is fine chemical used to adsorb fat from body, heavy metal adsorbent, and medicine. This research looked into the prospect of crab shell as raw material to produce chitosan. In this case, the process variable of chitosan preparation was investigated involving operation time and NaOH concentration to determine optimum condition. Whereas, the other parameters including operation temperature, NaOH to chitin ratio is respectively fixed at 70-80 0 C and 5:1. As respons, the yield of chitosan is calculated. In this case, the deacetylation time is varied from 1-4 hours with the time step 1 hours and the concentration of NaOH is change from 20-50% with the step size of 10%. The results showed that the maximum yield of chitosan is 9,15%, which could be achieved at operation time of 3 hours and NaOH concentration of 20%. Keywords : crab shell, deproteination, demineralization, deacetylation, chitosan }, issn = {2407-5973}, pages = {37--40} doi = {10.14710/reaktor.7.1.37-40}, url = {https://ejournal.undip.ac.id/index.php/reaktor/article/view/14999} }
Refworks Citation Data :
Crab shell waste from seafood restaurant is potential to be used as chitosan source. This material containing 20-30% of chitin which could be converted into chitosan through deacetylation process. While, chitin could be isolated from crab shell by deproteination and demineralization. Chitosan is fine chemical used to adsorb fat from body, heavy metal adsorbent, and medicine. This research looked into the prospect of crab shell as raw material to produce chitosan. In this case, the process variable of chitosan preparation was investigated involving operation time and NaOH concentration to determine optimum condition. Whereas, the other parameters including operation temperature, NaOH to chitin ratio is respectively fixed at 70-80 0C and 5:1. As respons, the yield of chitosan is calculated. In this case, the deacetylation time is varied from 1-4 hours with the time step 1 hours and the concentration of NaOH is change from 20-50% with the step size of 10%. The results showed that the maximum yield of chitosan is 9,15%, which could be achieved at operation time of 3 hours and NaOH concentration of 20%.
Keywords : crab shell, deproteination, demineralization, deacetylation, chitosan
Article Metrics:
Last update:
Influence of the parameters of chitin deacetylation process on the chitosan obtained from crab shell waste
A novel adsorption process for the removal of salt and dye from saline textile industrial wastewater using a three-stage reactor with surface modified adsorbents
Extraction of Chitosan from Crab Shell and Fungi and Its Antibacterial Activity against Urinary Tract Infection Causing Pathogens
Last update: 2025-02-01 05:51:07
In order for REAKTOR to publish and disseminate research articles, we need non-exclusive publishing rights (transferred from the author(s) to the publisher). This is determined by a publishing agreement between the Author(s) and REAKTOR. This agreement deals with transferring or licensing the publishing copyright to REAKTOR while Authors still retain significant rights to use and share their published articles. REAKTOR supports the need for authors to share, disseminate, and maximize the impact of their research and these rights in any databases.
As a journal author, you have the right to use your article for many purposes, including by your employing institute or company. These Author rights can be exercised without the need to obtain specific permission. Authors publishing in BCREC journals have wide rights to use their works for teaching and scholarly purposes without needing to seek permission, including, but not limited to:
Authors/Readers/Third Parties can copy and redistribute the material in any medium or format and remix, transform, and build upon the material for any purpose, even commercially. Still, they must give appropriate credit (the name of the creator and attribution parties (authors detail information), a copyright notice, an open access license notice, a disclaimer notice, and a link to the material), provide a link to the license, and indicate if changes were made (Publisher indicates the modification of the material (if any).
Authors/Readers/Third Parties can read, print and download, redistribute or republish the article (e.g., display in a repository), translate the article, download for text and data mining purposes, reuse portions or extracts from the article in other works, sell or re-use for commercial purposes, remix, transform, or build upon the material, they must distribute their contributions under the same license as the original Creative Commons Attribution-ShareAlike (CC BY-SA).
JURNAL REAKTOR (p-ISSN: 0852-0798; e-ISSN: 2407-5973)
Published by Departement of Chemical Engineering, Diponegoro University